优化KRAS抑制剂的血脑屏障通透性:一种结构约束的分子生成方法。

IF 8.9
Journal of pharmaceutical analysis Pub Date : 2025-08-01 Epub Date: 2025-05-09 DOI:10.1016/j.jpha.2025.101337
Xia Sheng, Yike Gui, Jie Yu, Yitian Wang, Zhenghao Li, Xiaoya Zhang, Yuxin Xing, Yuqing Wang, Zhaojun Li, Mingyue Zheng, Liquan Yang, Xutong Li
{"title":"优化KRAS抑制剂的血脑屏障通透性:一种结构约束的分子生成方法。","authors":"Xia Sheng, Yike Gui, Jie Yu, Yitian Wang, Zhenghao Li, Xiaoya Zhang, Yuxin Xing, Yuqing Wang, Zhaojun Li, Mingyue Zheng, Liquan Yang, Xutong Li","doi":"10.1016/j.jpha.2025.101337","DOIUrl":null,"url":null,"abstract":"<p><p>Kirsten rat sarcoma viral oncogene homolog (KRAS) protein inhibitors are a promising class of therapeutics, but research on molecules that effectively penetrate the blood-brain barrier (BBB) remains limited, which is crucial for treating central nervous system (CNS) malignancies. Although molecular generation models have recently advanced drug discovery, they often overlook the complexity of biological and chemical factors, leaving room for improvement. In this study, we present a structure-constrained molecular generation workflow designed to optimize lead compounds for both drug efficacy and drug absorption properties. Our approach utilizes a variational autoencoder (VAE) generative model integrated with reinforcement learning for multi-objective optimization. This method specifically aims to enhance BBB permeability (BBBp) while maintaining high-affinity substructures of KRAS inhibitors. To support this, we incorporate a specialized KRAS BBB predictor based on active learning and an affinity predictor employing comparative learning models. Additionally, we introduce two novel metrics, the knowledge-integrated reproduction score (KIRS) and the composite diversity score (CDS), to assess structural performance and biological relevance. Retrospective validation with KRAS inhibitors, AMG510 and MRTX849, demonstrates the framework's effectiveness in optimizing BBBp and highlights its potential for real-world drug development applications. This study provides a robust framework for accelerating the structural enhancement of lead compounds, advancing the drug development process across diverse targets.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 8","pages":"101337"},"PeriodicalIF":8.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398849/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing blood-brain barrier permeability in KRAS inhibitors: A structure-constrained molecular generation approach.\",\"authors\":\"Xia Sheng, Yike Gui, Jie Yu, Yitian Wang, Zhenghao Li, Xiaoya Zhang, Yuxin Xing, Yuqing Wang, Zhaojun Li, Mingyue Zheng, Liquan Yang, Xutong Li\",\"doi\":\"10.1016/j.jpha.2025.101337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kirsten rat sarcoma viral oncogene homolog (KRAS) protein inhibitors are a promising class of therapeutics, but research on molecules that effectively penetrate the blood-brain barrier (BBB) remains limited, which is crucial for treating central nervous system (CNS) malignancies. Although molecular generation models have recently advanced drug discovery, they often overlook the complexity of biological and chemical factors, leaving room for improvement. In this study, we present a structure-constrained molecular generation workflow designed to optimize lead compounds for both drug efficacy and drug absorption properties. Our approach utilizes a variational autoencoder (VAE) generative model integrated with reinforcement learning for multi-objective optimization. This method specifically aims to enhance BBB permeability (BBBp) while maintaining high-affinity substructures of KRAS inhibitors. To support this, we incorporate a specialized KRAS BBB predictor based on active learning and an affinity predictor employing comparative learning models. Additionally, we introduce two novel metrics, the knowledge-integrated reproduction score (KIRS) and the composite diversity score (CDS), to assess structural performance and biological relevance. Retrospective validation with KRAS inhibitors, AMG510 and MRTX849, demonstrates the framework's effectiveness in optimizing BBBp and highlights its potential for real-world drug development applications. This study provides a robust framework for accelerating the structural enhancement of lead compounds, advancing the drug development process across diverse targets.</p>\",\"PeriodicalId\":94338,\"journal\":{\"name\":\"Journal of pharmaceutical analysis\",\"volume\":\"15 8\",\"pages\":\"101337\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398849/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jpha.2025.101337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2025.101337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Kirsten大鼠肉瘤病毒癌基因同源(KRAS)蛋白抑制剂是一类很有前途的治疗药物,但有效穿透血脑屏障(BBB)的分子研究仍然有限,这对于治疗中枢神经系统(CNS)恶性肿瘤至关重要。虽然分子生成模型最近推动了药物发现,但它们往往忽略了生物和化学因素的复杂性,留下了改进的空间。在这项研究中,我们提出了一种结构受限的分子生成工作流程,旨在优化先导化合物的药物功效和药物吸收特性。我们的方法利用变分自编码器(VAE)生成模型与多目标优化的强化学习相结合。该方法旨在增强血脑屏障通透性(BBBp),同时保持KRAS抑制剂的高亲和力亚结构。为了支持这一点,我们结合了一个基于主动学习的专业KRAS BBB预测器和一个采用比较学习模型的亲和预测器。此外,我们引入了两个新的指标,知识集成繁殖评分(KIRS)和复合多样性评分(CDS),以评估结构性能和生物学相关性。KRAS抑制剂AMG510和MRTX849的回顾性验证证明了该框架在优化BBBp方面的有效性,并强调了其在实际药物开发中的应用潜力。这项研究为加速先导化合物的结构增强,推进跨不同靶点的药物开发过程提供了一个强有力的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing blood-brain barrier permeability in KRAS inhibitors: A structure-constrained molecular generation approach.

Kirsten rat sarcoma viral oncogene homolog (KRAS) protein inhibitors are a promising class of therapeutics, but research on molecules that effectively penetrate the blood-brain barrier (BBB) remains limited, which is crucial for treating central nervous system (CNS) malignancies. Although molecular generation models have recently advanced drug discovery, they often overlook the complexity of biological and chemical factors, leaving room for improvement. In this study, we present a structure-constrained molecular generation workflow designed to optimize lead compounds for both drug efficacy and drug absorption properties. Our approach utilizes a variational autoencoder (VAE) generative model integrated with reinforcement learning for multi-objective optimization. This method specifically aims to enhance BBB permeability (BBBp) while maintaining high-affinity substructures of KRAS inhibitors. To support this, we incorporate a specialized KRAS BBB predictor based on active learning and an affinity predictor employing comparative learning models. Additionally, we introduce two novel metrics, the knowledge-integrated reproduction score (KIRS) and the composite diversity score (CDS), to assess structural performance and biological relevance. Retrospective validation with KRAS inhibitors, AMG510 and MRTX849, demonstrates the framework's effectiveness in optimizing BBBp and highlights its potential for real-world drug development applications. This study provides a robust framework for accelerating the structural enhancement of lead compounds, advancing the drug development process across diverse targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信