Cas9超越CRISPR - SUMOylation,效应样潜力和致病性适应。

IF 4.2
Umut Sahin
{"title":"Cas9超越CRISPR - SUMOylation,效应样潜力和致病性适应。","authors":"Umut Sahin","doi":"10.1111/febs.70256","DOIUrl":null,"url":null,"abstract":"<p><p>The CRISPR/Cas9 system has revolutionized molecular biology and gene editing, yet key aspects of its regulation, especially within eukaryotic environments, remain enigmatic. In this Viewpoint article, I will speculate on and explore the provocative hypothesis that Cas9 may possess previously unrecognized effector-like functions when expressed in host cells, potentially shaped by host-mediated post-translational modifications (PTMs). Of particular interest is SUMOylation at lysine 848, a key residue for DNA binding within the catalytic site, raising the possibility that this modification is not incidental, but functionally significant and precisely regulated. SUMOylation, a eukaryotic PTM, is increasingly recognized as a mechanism that also targets bacterial and viral effector proteins and virulence factors during infection, exerting context-dependent effects that may either enhance or hinder pathogen replication. Could Cas9, beyond its canonical role in bacterial CRISPR immunity, act as a host-modulating effector during infection, akin to known bacterial nucleomodulins such as transcription activator-like (TAL) effectors? If so, this would imply that certain pathogenic bacteria may have evolved Cas9 variants capable of exploiting host PTM machinery and targeting the host genome-an adaptation with potential implications for microbial virulence, host-pathogen interactions, and co-evolutionary dynamics. This perspective underscores the importance of systematically mapping Cas9 PTMs and examining their evolutionary conservation, functional significance, and pharmacological tunability, not only for basic biological insight and to deepen our understanding of microbial strategies, but also to refine the precision and safety of Cas9-based therapeutic platforms.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cas9 beyond CRISPR - SUMOylation, effector-like potential and pathogenic adaptation.\",\"authors\":\"Umut Sahin\",\"doi\":\"10.1111/febs.70256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The CRISPR/Cas9 system has revolutionized molecular biology and gene editing, yet key aspects of its regulation, especially within eukaryotic environments, remain enigmatic. In this Viewpoint article, I will speculate on and explore the provocative hypothesis that Cas9 may possess previously unrecognized effector-like functions when expressed in host cells, potentially shaped by host-mediated post-translational modifications (PTMs). Of particular interest is SUMOylation at lysine 848, a key residue for DNA binding within the catalytic site, raising the possibility that this modification is not incidental, but functionally significant and precisely regulated. SUMOylation, a eukaryotic PTM, is increasingly recognized as a mechanism that also targets bacterial and viral effector proteins and virulence factors during infection, exerting context-dependent effects that may either enhance or hinder pathogen replication. Could Cas9, beyond its canonical role in bacterial CRISPR immunity, act as a host-modulating effector during infection, akin to known bacterial nucleomodulins such as transcription activator-like (TAL) effectors? If so, this would imply that certain pathogenic bacteria may have evolved Cas9 variants capable of exploiting host PTM machinery and targeting the host genome-an adaptation with potential implications for microbial virulence, host-pathogen interactions, and co-evolutionary dynamics. This perspective underscores the importance of systematically mapping Cas9 PTMs and examining their evolutionary conservation, functional significance, and pharmacological tunability, not only for basic biological insight and to deepen our understanding of microbial strategies, but also to refine the precision and safety of Cas9-based therapeutic platforms.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

CRISPR/Cas9系统已经彻底改变了分子生物学和基因编辑,但其调控的关键方面,特别是在真核环境中,仍然是一个谜。在这篇观点文章中,我将推测和探索Cas9在宿主细胞中表达时可能具有以前未被识别的效应物样功能,可能由宿主介导的翻译后修饰(ptm)塑造。特别令人感兴趣的是赖氨酸848的SUMOylation,赖氨酸848是催化位点内DNA结合的关键残基,这提高了这种修饰不是偶然的可能性,而是功能显著和精确调节的可能性。SUMOylation是一种真核PTM,在感染过程中也被认为是一种针对细菌和病毒效应蛋白和毒力因子的机制,发挥上下文依赖的作用,可能增强或阻碍病原体的复制。除了在细菌CRISPR免疫中的典型作用外,Cas9是否可以在感染期间作为宿主调节效应物,类似于已知的细菌核调节蛋白,如转录激活因子样(TAL)效应物?如果是这样,这将意味着某些致病菌可能已经进化出能够利用宿主PTM机制并靶向宿主基因组的Cas9变体,这种适应对微生物毒力、宿主-病原体相互作用和共同进化动力学具有潜在的影响。这一观点强调了系统地绘制Cas9 ptm并研究其进化保守性、功能意义和药理学可调性的重要性,不仅有助于基本的生物学认识,加深我们对微生物策略的理解,而且还有助于提高基于Cas9的治疗平台的准确性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cas9 beyond CRISPR - SUMOylation, effector-like potential and pathogenic adaptation.

The CRISPR/Cas9 system has revolutionized molecular biology and gene editing, yet key aspects of its regulation, especially within eukaryotic environments, remain enigmatic. In this Viewpoint article, I will speculate on and explore the provocative hypothesis that Cas9 may possess previously unrecognized effector-like functions when expressed in host cells, potentially shaped by host-mediated post-translational modifications (PTMs). Of particular interest is SUMOylation at lysine 848, a key residue for DNA binding within the catalytic site, raising the possibility that this modification is not incidental, but functionally significant and precisely regulated. SUMOylation, a eukaryotic PTM, is increasingly recognized as a mechanism that also targets bacterial and viral effector proteins and virulence factors during infection, exerting context-dependent effects that may either enhance or hinder pathogen replication. Could Cas9, beyond its canonical role in bacterial CRISPR immunity, act as a host-modulating effector during infection, akin to known bacterial nucleomodulins such as transcription activator-like (TAL) effectors? If so, this would imply that certain pathogenic bacteria may have evolved Cas9 variants capable of exploiting host PTM machinery and targeting the host genome-an adaptation with potential implications for microbial virulence, host-pathogen interactions, and co-evolutionary dynamics. This perspective underscores the importance of systematically mapping Cas9 PTMs and examining their evolutionary conservation, functional significance, and pharmacological tunability, not only for basic biological insight and to deepen our understanding of microbial strategies, but also to refine the precision and safety of Cas9-based therapeutic platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信