CDKL5通过CLIP170-dynactin复合物的形成调控轴突逆行转运的启动。

IF 4.2
Serena Baldin, Clara Carmone, Giorgia Valetti, Roberta De Rosa, Isabella Barbiero
{"title":"CDKL5通过CLIP170-dynactin复合物的形成调控轴突逆行转运的启动。","authors":"Serena Baldin, Clara Carmone, Giorgia Valetti, Roberta De Rosa, Isabella Barbiero","doi":"10.1111/febs.70230","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase implicated in regulating microtubule (MT) dynamics. Mutations in CDKL5 are associated with a rare neurodevelopmental disease called CDKL5 deficiency disorder (CDD), which is characterized by early-onset seizures and intellectual disabilities. Microtubule (MT)-related functions of CDKL5 are in part correlated with its interaction with MT-associated proteins, such as CAP-Gly domain-containing linker protein 1 [CLIP1; also known as cytoplasmic linker protein 170 alpha-2 (CLIP170)]. CLIP170 is a MT plus-end tracking protein that, once activated, can bind MTs and other proteins, favoring MT dynamics. Importantly, we have previously shown that CLIP170 is inactive in the absence of CDKL5, thus hindering MT functions. One of the best-characterized interactors of CLIP170 is dynactin, a multisubunit complex that binds the motor protein dynein. In particular, in neurons, active CLIP170 localizes to MTs in the axonal periphery, where it serves as a docking site for the interaction with dynactin, which in turn recruits dynein and various cargos, favoring the initiation of retrograde transport toward the neuronal soma. Here, we demonstrated that CLIP170-dynactin complex formation is impaired in the absence of CDKL5, thus leading to defective retrograde cargo trafficking. Overall, our findings expand the knowledge on the molecular mechanisms underlying neuronal transport and provide novel information regarding the etiopathogenesis of CDD.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CDKL5 regulates the initiation of retrograde axonal transport through CLIP170-dynactin complex formation.\",\"authors\":\"Serena Baldin, Clara Carmone, Giorgia Valetti, Roberta De Rosa, Isabella Barbiero\",\"doi\":\"10.1111/febs.70230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase implicated in regulating microtubule (MT) dynamics. Mutations in CDKL5 are associated with a rare neurodevelopmental disease called CDKL5 deficiency disorder (CDD), which is characterized by early-onset seizures and intellectual disabilities. Microtubule (MT)-related functions of CDKL5 are in part correlated with its interaction with MT-associated proteins, such as CAP-Gly domain-containing linker protein 1 [CLIP1; also known as cytoplasmic linker protein 170 alpha-2 (CLIP170)]. CLIP170 is a MT plus-end tracking protein that, once activated, can bind MTs and other proteins, favoring MT dynamics. Importantly, we have previously shown that CLIP170 is inactive in the absence of CDKL5, thus hindering MT functions. One of the best-characterized interactors of CLIP170 is dynactin, a multisubunit complex that binds the motor protein dynein. In particular, in neurons, active CLIP170 localizes to MTs in the axonal periphery, where it serves as a docking site for the interaction with dynactin, which in turn recruits dynein and various cargos, favoring the initiation of retrograde transport toward the neuronal soma. Here, we demonstrated that CLIP170-dynactin complex formation is impaired in the absence of CDKL5, thus leading to defective retrograde cargo trafficking. Overall, our findings expand the knowledge on the molecular mechanisms underlying neuronal transport and provide novel information regarding the etiopathogenesis of CDD.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞周期蛋白依赖性激酶样5 (CDKL5)是一种丝氨酸-苏氨酸激酶,参与调节微管(MT)动力学。CDKL5突变与一种名为CDKL5缺乏性疾病(CDD)的罕见神经发育疾病有关,其特征是早发性癫痫和智力残疾。CDKL5的微管(MT)相关功能部分与其与MT相关蛋白的相互作用相关,如CAP-Gly结构域连接蛋白1 [CLIP1;也称为细胞质连接蛋白170 α -2 (CLIP170)]。CLIP170是一种MT +末端跟踪蛋白,一旦激活,可以结合MT和其他蛋白质,有利于MT动力学。重要的是,我们之前已经证明,在缺乏CDKL5的情况下,CLIP170是无活性的,从而阻碍了MT的功能。CLIP170最具特征的相互作用物之一是动力蛋白,这是一种结合运动蛋白动力蛋白的多亚基复合物。特别是,在神经元中,活跃的CLIP170定位于轴突外周的mt,在那里它作为与动力蛋白相互作用的对接位点,动力蛋白反过来又吸收动力蛋白和各种货物,有利于向神经元体开始逆行运输。在这里,我们证明在缺乏CDKL5的情况下,CLIP170-dynactin复合物的形成受损,从而导致逆行货物运输缺陷。总的来说,我们的发现扩大了对神经转运的分子机制的了解,并提供了关于CDD发病机制的新信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CDKL5 regulates the initiation of retrograde axonal transport through CLIP170-dynactin complex formation.

Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase implicated in regulating microtubule (MT) dynamics. Mutations in CDKL5 are associated with a rare neurodevelopmental disease called CDKL5 deficiency disorder (CDD), which is characterized by early-onset seizures and intellectual disabilities. Microtubule (MT)-related functions of CDKL5 are in part correlated with its interaction with MT-associated proteins, such as CAP-Gly domain-containing linker protein 1 [CLIP1; also known as cytoplasmic linker protein 170 alpha-2 (CLIP170)]. CLIP170 is a MT plus-end tracking protein that, once activated, can bind MTs and other proteins, favoring MT dynamics. Importantly, we have previously shown that CLIP170 is inactive in the absence of CDKL5, thus hindering MT functions. One of the best-characterized interactors of CLIP170 is dynactin, a multisubunit complex that binds the motor protein dynein. In particular, in neurons, active CLIP170 localizes to MTs in the axonal periphery, where it serves as a docking site for the interaction with dynactin, which in turn recruits dynein and various cargos, favoring the initiation of retrograde transport toward the neuronal soma. Here, we demonstrated that CLIP170-dynactin complex formation is impaired in the absence of CDKL5, thus leading to defective retrograde cargo trafficking. Overall, our findings expand the knowledge on the molecular mechanisms underlying neuronal transport and provide novel information regarding the etiopathogenesis of CDD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信