对抗肌肉萎缩:纤维类型特异性的新兴治疗靶点。

IF 4.2
Samrat Chakraborty, Raz Ben-David, Shenhav Shemer
{"title":"对抗肌肉萎缩:纤维类型特异性的新兴治疗靶点。","authors":"Samrat Chakraborty, Raz Ben-David, Shenhav Shemer","doi":"10.1111/febs.70241","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle is essential for life as it enables physical movement, maintains posture, is crucial for breathing, and serves as a major site for energy and carbohydrate metabolism. Pathological conditions that reduce skeletal muscle mass and function-such as muscular dystrophies, motor-neuron diseases, cancer, type-2 diabetes, or aging-have detrimental effects on human health, reducing quality of life and survival. Currently, exercise is the only validated treatment for increasing muscle mass and function, but it is impractical for bedridden patients or the frail elderly. Significant advances in understanding the molecular mechanisms underlying atrophy of slow- or fast-twitch muscle fibers have identified numerous previously unknown key players that may show promise as potential drug targets. Here, we review these recent advances and discuss the potential of these discovered mechanisms as therapeutic targets to combat muscle wasting.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combating muscle atrophy: emerging therapeutic targets that are fiber-type-specific.\",\"authors\":\"Samrat Chakraborty, Raz Ben-David, Shenhav Shemer\",\"doi\":\"10.1111/febs.70241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle is essential for life as it enables physical movement, maintains posture, is crucial for breathing, and serves as a major site for energy and carbohydrate metabolism. Pathological conditions that reduce skeletal muscle mass and function-such as muscular dystrophies, motor-neuron diseases, cancer, type-2 diabetes, or aging-have detrimental effects on human health, reducing quality of life and survival. Currently, exercise is the only validated treatment for increasing muscle mass and function, but it is impractical for bedridden patients or the frail elderly. Significant advances in understanding the molecular mechanisms underlying atrophy of slow- or fast-twitch muscle fibers have identified numerous previously unknown key players that may show promise as potential drug targets. Here, we review these recent advances and discuss the potential of these discovered mechanisms as therapeutic targets to combat muscle wasting.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌对生命至关重要,因为它使身体运动,保持姿势,对呼吸至关重要,并且是能量和碳水化合物代谢的主要场所。减少骨骼肌质量和功能的病理状况——如肌肉萎缩症、运动神经元疾病、癌症、2型糖尿病或衰老——对人类健康有不利影响,降低生活质量和生存率。目前,锻炼是唯一有效的增加肌肉质量和功能的治疗方法,但对于卧床不起的病人或体弱的老年人来说是不切实际的。在了解慢速或快速肌纤维萎缩的分子机制方面取得了重大进展,已经确定了许多以前未知的关键参与者,这些参与者可能显示出潜在的药物靶点。在这里,我们回顾了这些最新进展,并讨论了这些发现的机制作为对抗肌肉萎缩的治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combating muscle atrophy: emerging therapeutic targets that are fiber-type-specific.

Skeletal muscle is essential for life as it enables physical movement, maintains posture, is crucial for breathing, and serves as a major site for energy and carbohydrate metabolism. Pathological conditions that reduce skeletal muscle mass and function-such as muscular dystrophies, motor-neuron diseases, cancer, type-2 diabetes, or aging-have detrimental effects on human health, reducing quality of life and survival. Currently, exercise is the only validated treatment for increasing muscle mass and function, but it is impractical for bedridden patients or the frail elderly. Significant advances in understanding the molecular mechanisms underlying atrophy of slow- or fast-twitch muscle fibers have identified numerous previously unknown key players that may show promise as potential drug targets. Here, we review these recent advances and discuss the potential of these discovered mechanisms as therapeutic targets to combat muscle wasting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信