基于对话的深度学习“电影条”用于稳健的阿尔茨海默病检测。

IF 6 Q2 GERIATRICS & GERONTOLOGY
Arthur Trognon, Coralie Duman, Gwladys Vittart, Natacha Stortini, Loann Mahdar-Recorbet, Hamza Altakroury
{"title":"基于对话的深度学习“电影条”用于稳健的阿尔茨海默病检测。","authors":"Arthur Trognon, Coralie Duman, Gwladys Vittart, Natacha Stortini, Loann Mahdar-Recorbet, Hamza Altakroury","doi":"10.1038/s41514-025-00267-4","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection of Alzheimer's disease remains complex and costly despite advancements in neurobiological markers. We propose an innovative approach based on the topological and kinetic analysis of verbal exchanges to distinguish patients from healthy individuals. Without requiring full transcription, we leverage a convolutional network capable of identifying discursive patterns indicative of cognitive impairments. Our experiments, conducted with 80 participants, demonstrate performance levels exceeding 95% in cross-validation, comparable to computational approaches relying on biological markers. This robust and minimally invasive methodology could be easily integrated into clinical protocols, enhancing current diagnostics. It also holds the promise of cost-effectively extending monitoring to other neurodegenerative or psychiatric diseases.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"11 1","pages":"77"},"PeriodicalIF":6.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397328/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning of conversation-based 'filmstrips' for robust Alzheimer's disease detection.\",\"authors\":\"Arthur Trognon, Coralie Duman, Gwladys Vittart, Natacha Stortini, Loann Mahdar-Recorbet, Hamza Altakroury\",\"doi\":\"10.1038/s41514-025-00267-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early detection of Alzheimer's disease remains complex and costly despite advancements in neurobiological markers. We propose an innovative approach based on the topological and kinetic analysis of verbal exchanges to distinguish patients from healthy individuals. Without requiring full transcription, we leverage a convolutional network capable of identifying discursive patterns indicative of cognitive impairments. Our experiments, conducted with 80 participants, demonstrate performance levels exceeding 95% in cross-validation, comparable to computational approaches relying on biological markers. This robust and minimally invasive methodology could be easily integrated into clinical protocols, enhancing current diagnostics. It also holds the promise of cost-effectively extending monitoring to other neurodegenerative or psychiatric diseases.</p>\",\"PeriodicalId\":94160,\"journal\":{\"name\":\"npj aging\",\"volume\":\"11 1\",\"pages\":\"77\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397328/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-025-00267-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-025-00267-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管神经生物学标志物取得了进步,但阿尔茨海默病的早期检测仍然复杂且昂贵。我们提出了一种基于语言交流的拓扑和动力学分析的创新方法来区分患者和健康个体。在不需要完全转录的情况下,我们利用了一个能够识别表明认知障碍的话语模式的卷积网络。我们对80名参与者进行的实验表明,交叉验证的性能水平超过95%,与依赖生物标记的计算方法相当。这种稳健且微创的方法可以很容易地整合到临床方案中,增强当前的诊断。它还有望经济有效地将监测扩展到其他神经退行性疾病或精神疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning of conversation-based 'filmstrips' for robust Alzheimer's disease detection.

Deep learning of conversation-based 'filmstrips' for robust Alzheimer's disease detection.

Deep learning of conversation-based 'filmstrips' for robust Alzheimer's disease detection.

Early detection of Alzheimer's disease remains complex and costly despite advancements in neurobiological markers. We propose an innovative approach based on the topological and kinetic analysis of verbal exchanges to distinguish patients from healthy individuals. Without requiring full transcription, we leverage a convolutional network capable of identifying discursive patterns indicative of cognitive impairments. Our experiments, conducted with 80 participants, demonstrate performance levels exceeding 95% in cross-validation, comparable to computational approaches relying on biological markers. This robust and minimally invasive methodology could be easily integrated into clinical protocols, enhancing current diagnostics. It also holds the promise of cost-effectively extending monitoring to other neurodegenerative or psychiatric diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信