Qi Li, Yujie Qiao, Zheng Li, Rui Wu, Yekun Zhang, Yan Zhao, Wei Tian, Rumin Wang, Weixu Feng and Hongxia Yan
{"title":"具有亚胺键的超支化聚硅氧烷:室温下具有长荧光寿命的红色荧光发射。","authors":"Qi Li, Yujie Qiao, Zheng Li, Rui Wu, Yekun Zhang, Yan Zhao, Wei Tian, Rumin Wang, Weixu Feng and Hongxia Yan","doi":"10.1039/D5TB01335F","DOIUrl":null,"url":null,"abstract":"<p >In recent years, due to their excellent biocompatibility and environmental friendliness, non-conjugated AIE polymers have attracted extensive attention. However, problems such as short emission wavelengths and low fluorescence lifetimes have severely limited the applications of these materials. In this paper, a siloxane monomer A1 containing an imine bond was designed and synthesized, and it was used as a raw material to synthesize a hyperbranched polysiloxane P1 with imine bonds and hydroxyl groups at the end of the polymer chain. Surprisingly, P1 exhibited bright red fluorescence, and its fluorescence lifetime reached an uncommon microsecond level (11.40 μs). The luminescence mechanisms of A1 and P1 were explored through experimental and theoretical calculations. It was proposed that the introduction of local rigid planar structures could promote charge delocalization and enhance through-space interactions. Thus, the emission wavelength has a red-shift and the fluorescence lifetime has been improved. In addition, the solvent effects and pH responsiveness of P1, as well as the application of P1 for Mn<small><sup>2+</sup></small> detection, were also studied.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 37","pages":" 11687-11695"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hyperbranched polysiloxane with imine bonds: red fluorescence emission with a long fluorescence lifetime at room temperature\",\"authors\":\"Qi Li, Yujie Qiao, Zheng Li, Rui Wu, Yekun Zhang, Yan Zhao, Wei Tian, Rumin Wang, Weixu Feng and Hongxia Yan\",\"doi\":\"10.1039/D5TB01335F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, due to their excellent biocompatibility and environmental friendliness, non-conjugated AIE polymers have attracted extensive attention. However, problems such as short emission wavelengths and low fluorescence lifetimes have severely limited the applications of these materials. In this paper, a siloxane monomer A1 containing an imine bond was designed and synthesized, and it was used as a raw material to synthesize a hyperbranched polysiloxane P1 with imine bonds and hydroxyl groups at the end of the polymer chain. Surprisingly, P1 exhibited bright red fluorescence, and its fluorescence lifetime reached an uncommon microsecond level (11.40 μs). The luminescence mechanisms of A1 and P1 were explored through experimental and theoretical calculations. It was proposed that the introduction of local rigid planar structures could promote charge delocalization and enhance through-space interactions. Thus, the emission wavelength has a red-shift and the fluorescence lifetime has been improved. In addition, the solvent effects and pH responsiveness of P1, as well as the application of P1 for Mn<small><sup>2+</sup></small> detection, were also studied.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 37\",\"pages\":\" 11687-11695\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01335f\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01335f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A hyperbranched polysiloxane with imine bonds: red fluorescence emission with a long fluorescence lifetime at room temperature
In recent years, due to their excellent biocompatibility and environmental friendliness, non-conjugated AIE polymers have attracted extensive attention. However, problems such as short emission wavelengths and low fluorescence lifetimes have severely limited the applications of these materials. In this paper, a siloxane monomer A1 containing an imine bond was designed and synthesized, and it was used as a raw material to synthesize a hyperbranched polysiloxane P1 with imine bonds and hydroxyl groups at the end of the polymer chain. Surprisingly, P1 exhibited bright red fluorescence, and its fluorescence lifetime reached an uncommon microsecond level (11.40 μs). The luminescence mechanisms of A1 and P1 were explored through experimental and theoretical calculations. It was proposed that the introduction of local rigid planar structures could promote charge delocalization and enhance through-space interactions. Thus, the emission wavelength has a red-shift and the fluorescence lifetime has been improved. In addition, the solvent effects and pH responsiveness of P1, as well as the application of P1 for Mn2+ detection, were also studied.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices