Weiqiang Lan, Chuan Guo, Yuheng Liu, Fei Ma, Weifei Zhang, Dengbo Yao, Yu Wang and Qingquan Kong
{"title":"一种用于椎间盘退变修复的pH/ROS双响应智能微凝胶miRNA递送系统。","authors":"Weiqiang Lan, Chuan Guo, Yuheng Liu, Fei Ma, Weifei Zhang, Dengbo Yao, Yu Wang and Qingquan Kong","doi":"10.1039/D5TB01505G","DOIUrl":null,"url":null,"abstract":"<p >The progression of intervertebral disc degeneration (IDD) is due to the progressive exacerbation of apoptosis and impaired extracellular matrix (ECM) synthesis, both of which are induced by progressive inflammation. Therefore, addressing the inflammatory microenvironment and correcting excessive apoptosis of nucleus pulposus cells (NPCs) are key to achieving intervertebral disc (IVD) regeneration. In this study, we designed a microenvironment-responsive smart microgel gene delivery system that for the first time combines phenylboronic acid-functionalized microgels with strontium sulfite nanoparticles to load miR-155 to enhance their anti-apoptosis capacity and promote ECM regenerative effects. In addition, strontium sulfite nanoparticles were able to respond to pH changes and dissolve at endosomal pH to release genetic materials. This highly biocompatible microgel drug system (MS-TSNPs@miR-155) was capable of continuously releasing miR-155, effectively modulating inflammation and attenuating apoptosis in NPCs. These minimally invasive and smart delivery capabilities promote the restoration of metabolic homeostasis within the medullary ECM, effectively delaying IDD progression.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 36","pages":" 11454-11469"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pH/ROS dual responsive smart microgel miRNA delivery system for repair of intervertebral disc degeneration\",\"authors\":\"Weiqiang Lan, Chuan Guo, Yuheng Liu, Fei Ma, Weifei Zhang, Dengbo Yao, Yu Wang and Qingquan Kong\",\"doi\":\"10.1039/D5TB01505G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The progression of intervertebral disc degeneration (IDD) is due to the progressive exacerbation of apoptosis and impaired extracellular matrix (ECM) synthesis, both of which are induced by progressive inflammation. Therefore, addressing the inflammatory microenvironment and correcting excessive apoptosis of nucleus pulposus cells (NPCs) are key to achieving intervertebral disc (IVD) regeneration. In this study, we designed a microenvironment-responsive smart microgel gene delivery system that for the first time combines phenylboronic acid-functionalized microgels with strontium sulfite nanoparticles to load miR-155 to enhance their anti-apoptosis capacity and promote ECM regenerative effects. In addition, strontium sulfite nanoparticles were able to respond to pH changes and dissolve at endosomal pH to release genetic materials. This highly biocompatible microgel drug system (MS-TSNPs@miR-155) was capable of continuously releasing miR-155, effectively modulating inflammation and attenuating apoptosis in NPCs. These minimally invasive and smart delivery capabilities promote the restoration of metabolic homeostasis within the medullary ECM, effectively delaying IDD progression.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 36\",\"pages\":\" 11454-11469\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01505g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01505g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A pH/ROS dual responsive smart microgel miRNA delivery system for repair of intervertebral disc degeneration
The progression of intervertebral disc degeneration (IDD) is due to the progressive exacerbation of apoptosis and impaired extracellular matrix (ECM) synthesis, both of which are induced by progressive inflammation. Therefore, addressing the inflammatory microenvironment and correcting excessive apoptosis of nucleus pulposus cells (NPCs) are key to achieving intervertebral disc (IVD) regeneration. In this study, we designed a microenvironment-responsive smart microgel gene delivery system that for the first time combines phenylboronic acid-functionalized microgels with strontium sulfite nanoparticles to load miR-155 to enhance their anti-apoptosis capacity and promote ECM regenerative effects. In addition, strontium sulfite nanoparticles were able to respond to pH changes and dissolve at endosomal pH to release genetic materials. This highly biocompatible microgel drug system (MS-TSNPs@miR-155) was capable of continuously releasing miR-155, effectively modulating inflammation and attenuating apoptosis in NPCs. These minimally invasive and smart delivery capabilities promote the restoration of metabolic homeostasis within the medullary ECM, effectively delaying IDD progression.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices