脂多糖印迹磁二氧化钛纳米剂利用多巴胺电荷转移驱动败血症的可见光光动力治疗。

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Jiateng Wu, Jiali Wang, Weige Dong, Yu Wan, Chungu Zhang, Ming-Yu Wu and Shun Feng
{"title":"脂多糖印迹磁二氧化钛纳米剂利用多巴胺电荷转移驱动败血症的可见光光动力治疗。","authors":"Jiateng Wu, Jiali Wang, Weige Dong, Yu Wan, Chungu Zhang, Ming-Yu Wu and Shun Feng","doi":"10.1039/D5TB01349F","DOIUrl":null,"url":null,"abstract":"<p >Conventional TiO<small><sub>2</sub></small>-based photodynamic therapy (PDT), which relies on ultraviolet (UV) activation, faces critical limitations including non-specific reactive oxygen species (ROS) generation causing collateral tissue damage, high-power density requirements risking thermal injury, and limited spatiotemporal precision due to broad-spectrum absorption. To address these challenges, we constructed a visible-light-driven nanoplatform through ligand-to-metal charge transfer (LMCT) engineering. The platform, termed LPS-MIP, integrates a polydopamine (PDA) molecular imprinting layer with a Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@SiO<small><sub>2</sub></small>@TiO<small><sub>2</sub></small> core. The PDA layer not only creates pathogen-specific recognition cavities <em>via</em> boronate affinity imprinting for selective <em>P. aeruginosa</em> binding but also establishes an LMCT pathway with TiO<small><sub>2</sub></small>, shifting its activation spectrum to visible light. This innovation enables UV-free ROS generation under low-intensity white LED light (100 mW cm<small><sup>−2</sup></small>), eliminating off-target toxicity while achieving complete bacterial eradication within 120 min, with 6.6-fold higher photocurrent density than UV-activated TiO<small><sub>2</sub></small>. In murine sepsis models, LPS-MIP demonstrated &gt;99% bacterial clearance in the bloodstream, suppressed hyperinflammation (TNF-α/IL-6 reduced to baseline levels), and prevented multiorgan damage, outperforming gentamicin-treated controls. The embedded Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> core enabled rapid magnetic retrieval, reducing hepatic nanoparticle retention by 85%. By replacing UV with biocompatible visible light and confining ROS production to pathogen-binding sites, this design resolves the long-standing trade-off between antimicrobial efficacy and systemic toxicity, offering a clinically adaptable strategy for precision sepsis therapy.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 36","pages":" 11309-11317"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipopolysaccharide-imprinted magneto-TiO2 nanoagents harness dopamine charge transfer to drive visible-light photodynamic therapy for sepsis\",\"authors\":\"Jiateng Wu, Jiali Wang, Weige Dong, Yu Wan, Chungu Zhang, Ming-Yu Wu and Shun Feng\",\"doi\":\"10.1039/D5TB01349F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Conventional TiO<small><sub>2</sub></small>-based photodynamic therapy (PDT), which relies on ultraviolet (UV) activation, faces critical limitations including non-specific reactive oxygen species (ROS) generation causing collateral tissue damage, high-power density requirements risking thermal injury, and limited spatiotemporal precision due to broad-spectrum absorption. To address these challenges, we constructed a visible-light-driven nanoplatform through ligand-to-metal charge transfer (LMCT) engineering. The platform, termed LPS-MIP, integrates a polydopamine (PDA) molecular imprinting layer with a Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@SiO<small><sub>2</sub></small>@TiO<small><sub>2</sub></small> core. The PDA layer not only creates pathogen-specific recognition cavities <em>via</em> boronate affinity imprinting for selective <em>P. aeruginosa</em> binding but also establishes an LMCT pathway with TiO<small><sub>2</sub></small>, shifting its activation spectrum to visible light. This innovation enables UV-free ROS generation under low-intensity white LED light (100 mW cm<small><sup>−2</sup></small>), eliminating off-target toxicity while achieving complete bacterial eradication within 120 min, with 6.6-fold higher photocurrent density than UV-activated TiO<small><sub>2</sub></small>. In murine sepsis models, LPS-MIP demonstrated &gt;99% bacterial clearance in the bloodstream, suppressed hyperinflammation (TNF-α/IL-6 reduced to baseline levels), and prevented multiorgan damage, outperforming gentamicin-treated controls. The embedded Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> core enabled rapid magnetic retrieval, reducing hepatic nanoparticle retention by 85%. By replacing UV with biocompatible visible light and confining ROS production to pathogen-binding sites, this design resolves the long-standing trade-off between antimicrobial efficacy and systemic toxicity, offering a clinically adaptable strategy for precision sepsis therapy.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 36\",\"pages\":\" 11309-11317\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01349f\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01349f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

传统的基于tio2的光动力疗法(PDT)依赖于紫外线(UV)的激活,面临着严重的局限性,包括非特异性活性氧(ROS)的产生导致附带组织损伤,高功率密度要求可能导致热损伤,以及广谱吸收导致的时空精度有限。为了解决这些挑战,我们通过配体到金属电荷转移(LMCT)工程构建了一个可见光驱动的纳米平台。该平台被称为LPS-MIP,集成了聚多巴胺(PDA)分子印迹层和Fe3O4@SiO2@TiO2核心。PDA层不仅通过硼酸盐亲和印迹形成病原体特异性识别空腔,选择性结合P. aeruginosa,而且还与TiO2建立了LMCT通路,将其激活光谱转移到可见光。该创新技术能够在低强度白光LED (100mw cm-2)下产生无紫外线的ROS,消除脱靶毒性,同时在120分钟内完全消灭细菌,光电流密度比紫外线激活的TiO2高6.6倍。在小鼠脓毒症模型中,LPS-MIP表现出血流中99%的细菌清除率,抑制高炎症(TNF-α/IL-6降至基线水平),并防止多器官损伤,优于庆大霉素治疗的对照组。嵌入的Fe3O4核实现了快速磁检索,减少了85%的肝脏纳米颗粒滞留。通过用生物相容性可见光取代紫外线,并将ROS的产生限制在病原体结合位点,该设计解决了长期以来抗菌效果和全身毒性之间的权衡,为精确的败血症治疗提供了临床适应性策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lipopolysaccharide-imprinted magneto-TiO2 nanoagents harness dopamine charge transfer to drive visible-light photodynamic therapy for sepsis

Lipopolysaccharide-imprinted magneto-TiO2 nanoagents harness dopamine charge transfer to drive visible-light photodynamic therapy for sepsis

Conventional TiO2-based photodynamic therapy (PDT), which relies on ultraviolet (UV) activation, faces critical limitations including non-specific reactive oxygen species (ROS) generation causing collateral tissue damage, high-power density requirements risking thermal injury, and limited spatiotemporal precision due to broad-spectrum absorption. To address these challenges, we constructed a visible-light-driven nanoplatform through ligand-to-metal charge transfer (LMCT) engineering. The platform, termed LPS-MIP, integrates a polydopamine (PDA) molecular imprinting layer with a Fe3O4@SiO2@TiO2 core. The PDA layer not only creates pathogen-specific recognition cavities via boronate affinity imprinting for selective P. aeruginosa binding but also establishes an LMCT pathway with TiO2, shifting its activation spectrum to visible light. This innovation enables UV-free ROS generation under low-intensity white LED light (100 mW cm−2), eliminating off-target toxicity while achieving complete bacterial eradication within 120 min, with 6.6-fold higher photocurrent density than UV-activated TiO2. In murine sepsis models, LPS-MIP demonstrated >99% bacterial clearance in the bloodstream, suppressed hyperinflammation (TNF-α/IL-6 reduced to baseline levels), and prevented multiorgan damage, outperforming gentamicin-treated controls. The embedded Fe3O4 core enabled rapid magnetic retrieval, reducing hepatic nanoparticle retention by 85%. By replacing UV with biocompatible visible light and confining ROS production to pathogen-binding sites, this design resolves the long-standing trade-off between antimicrobial efficacy and systemic toxicity, offering a clinically adaptable strategy for precision sepsis therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信