{"title":"多功能PAMAM纳米颗粒与顺序抗菌再矿化治疗的牙本质龋齿管理。","authors":"Mingxiao Liu, Jiahe Li, Ziyou Wang, Miao Chen, Jianru Yi, Zhihe Zhao and Kunneng Liang","doi":"10.1039/D5TB01477H","DOIUrl":null,"url":null,"abstract":"<p >Dentin caries is a multifactorial pathological process characterized by bacterial colonization and biofilm formation that result in concurrent acid-mediated demineralization and matrix metalloproteinase (MMP)-mediated degradation of the collagenous matrix. While remineralization therapies offer minimal invasiveness, their long-term efficacy is compromised by ongoing collagen degradation and persistent bacterial acid production that counteract remineralization efforts. To address these limitations, we designed PAMAM-G4@EG (PGE) nanoparticles (NPs) using polyamide amine (PAMAM) dendrimers as mineral deposition templates, with antimicrobial peptide G(IIKK)<small><sub>4</sub></small>I–NH<small><sub>2</sub></small> (G4) grafted onto the external surface groups and epigallocatechin gallate (EG) encapsulated within the internal cavities to provide biofilm disintegration and collagen protection for comprehensive dentin caries intervention. First, the PGE NPs reach lesion surfaces and accelerate EG release under acidic conditions. EG loosens <em>Streptococcus mutans</em> (<em>S. mutans</em>) biofilms, followed by G4-mediated disruption of planktonic <em>S. mutans</em> cell membranes. <em>In vitro</em> antimicrobial assays demonstrated a bactericidal efficacy of 99.75% after PGE intervention. Upon deeper lesion penetration, PGE releases EG to inhibit MMP activity and preserve the collagen scaffold, achieving a 74% reduction in hydroxyproline (HYP) levels. Simultaneously, PAMAM promotes controlled hydroxyapatite (HA) deposition, facilitating dentin remineralization. Treatment with PGE in artificial saliva containing collagenase restored dentin hardness to 89.88% of intact values. <em>In vivo</em> validation using a rat caries model confirmed therapeutic efficacy through significant reductions in Keyes scores, decreased salivary <em>S. mutans</em> counts, and increased molar mineral density. These findings demonstrate the therapeutic efficacy of PGE in dentin caries prevention and treatment, supporting its potential for clinical application.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 38","pages":" 12085-12100"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional PAMAM nanoparticles with sequential antimicrobial-remineralization therapy for dentin caries management\",\"authors\":\"Mingxiao Liu, Jiahe Li, Ziyou Wang, Miao Chen, Jianru Yi, Zhihe Zhao and Kunneng Liang\",\"doi\":\"10.1039/D5TB01477H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dentin caries is a multifactorial pathological process characterized by bacterial colonization and biofilm formation that result in concurrent acid-mediated demineralization and matrix metalloproteinase (MMP)-mediated degradation of the collagenous matrix. While remineralization therapies offer minimal invasiveness, their long-term efficacy is compromised by ongoing collagen degradation and persistent bacterial acid production that counteract remineralization efforts. To address these limitations, we designed PAMAM-G4@EG (PGE) nanoparticles (NPs) using polyamide amine (PAMAM) dendrimers as mineral deposition templates, with antimicrobial peptide G(IIKK)<small><sub>4</sub></small>I–NH<small><sub>2</sub></small> (G4) grafted onto the external surface groups and epigallocatechin gallate (EG) encapsulated within the internal cavities to provide biofilm disintegration and collagen protection for comprehensive dentin caries intervention. First, the PGE NPs reach lesion surfaces and accelerate EG release under acidic conditions. EG loosens <em>Streptococcus mutans</em> (<em>S. mutans</em>) biofilms, followed by G4-mediated disruption of planktonic <em>S. mutans</em> cell membranes. <em>In vitro</em> antimicrobial assays demonstrated a bactericidal efficacy of 99.75% after PGE intervention. Upon deeper lesion penetration, PGE releases EG to inhibit MMP activity and preserve the collagen scaffold, achieving a 74% reduction in hydroxyproline (HYP) levels. Simultaneously, PAMAM promotes controlled hydroxyapatite (HA) deposition, facilitating dentin remineralization. Treatment with PGE in artificial saliva containing collagenase restored dentin hardness to 89.88% of intact values. <em>In vivo</em> validation using a rat caries model confirmed therapeutic efficacy through significant reductions in Keyes scores, decreased salivary <em>S. mutans</em> counts, and increased molar mineral density. These findings demonstrate the therapeutic efficacy of PGE in dentin caries prevention and treatment, supporting its potential for clinical application.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 38\",\"pages\":\" 12085-12100\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01477h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01477h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Multifunctional PAMAM nanoparticles with sequential antimicrobial-remineralization therapy for dentin caries management
Dentin caries is a multifactorial pathological process characterized by bacterial colonization and biofilm formation that result in concurrent acid-mediated demineralization and matrix metalloproteinase (MMP)-mediated degradation of the collagenous matrix. While remineralization therapies offer minimal invasiveness, their long-term efficacy is compromised by ongoing collagen degradation and persistent bacterial acid production that counteract remineralization efforts. To address these limitations, we designed PAMAM-G4@EG (PGE) nanoparticles (NPs) using polyamide amine (PAMAM) dendrimers as mineral deposition templates, with antimicrobial peptide G(IIKK)4I–NH2 (G4) grafted onto the external surface groups and epigallocatechin gallate (EG) encapsulated within the internal cavities to provide biofilm disintegration and collagen protection for comprehensive dentin caries intervention. First, the PGE NPs reach lesion surfaces and accelerate EG release under acidic conditions. EG loosens Streptococcus mutans (S. mutans) biofilms, followed by G4-mediated disruption of planktonic S. mutans cell membranes. In vitro antimicrobial assays demonstrated a bactericidal efficacy of 99.75% after PGE intervention. Upon deeper lesion penetration, PGE releases EG to inhibit MMP activity and preserve the collagen scaffold, achieving a 74% reduction in hydroxyproline (HYP) levels. Simultaneously, PAMAM promotes controlled hydroxyapatite (HA) deposition, facilitating dentin remineralization. Treatment with PGE in artificial saliva containing collagenase restored dentin hardness to 89.88% of intact values. In vivo validation using a rat caries model confirmed therapeutic efficacy through significant reductions in Keyes scores, decreased salivary S. mutans counts, and increased molar mineral density. These findings demonstrate the therapeutic efficacy of PGE in dentin caries prevention and treatment, supporting its potential for clinical application.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices