{"title":"功能化纳米孔结构源于先进生物医学应用的溶胶-凝胶工艺。","authors":"Piumika Yapa and Imalka Munaweera","doi":"10.1039/D5TB00958H","DOIUrl":null,"url":null,"abstract":"<p >The sol–gel method is a highly versatile and precise technique, making it a powerful tool for the synthesis and functionalization of nanoporous materials that play a critical role in advancing biomedical applications. Nanoporous structures, due to their unique pore architectures and high surface areas, offer significant advantages in drug delivery systems, tissue engineering, biosensing, and diagnostic technologies. These materials can efficiently encapsulate and release bioactive compounds, such as proteins, nucleic acids, and chemotherapeutic agents, making them ideal candidates for targeted therapies. The sol–gel process enables the tailored design of nanoporous materials with adjustable pore sizes, surface chemistry, and electrostatic properties, enhancing their compatibility with biological systems. Functionalization techniques, including PEGylation and surface modification with targeting ligands or bioactive molecules, further enhance their therapeutic and diagnostic potential by allowing precise targeting, reducing immune responses, and prolonging circulation times. Nanoporous materials also hold great promise in tissue engineering, where they can serve as scaffolds that mimic the extracellular matrix, supporting cell adhesion, differentiation, and tissue regeneration. Additionally, their large surface areas facilitate biomolecule immobilization, enabling the development of sensitive biosensors and offering advancements in disease detection. This paper provides a comprehensive review of the sol–gel method for synthesizing and functionalizing nanoporous structures, underscoring their significant biomedical applications. It also delves into their promising future potential in revolutionizing drug delivery, advancing tissue engineering, and enhancing diagnostic systems.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 35","pages":" 10715-10742"},"PeriodicalIF":6.1000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized nanoporous architectures derived from sol–gel processes for advanced biomedical applications\",\"authors\":\"Piumika Yapa and Imalka Munaweera\",\"doi\":\"10.1039/D5TB00958H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The sol–gel method is a highly versatile and precise technique, making it a powerful tool for the synthesis and functionalization of nanoporous materials that play a critical role in advancing biomedical applications. Nanoporous structures, due to their unique pore architectures and high surface areas, offer significant advantages in drug delivery systems, tissue engineering, biosensing, and diagnostic technologies. These materials can efficiently encapsulate and release bioactive compounds, such as proteins, nucleic acids, and chemotherapeutic agents, making them ideal candidates for targeted therapies. The sol–gel process enables the tailored design of nanoporous materials with adjustable pore sizes, surface chemistry, and electrostatic properties, enhancing their compatibility with biological systems. Functionalization techniques, including PEGylation and surface modification with targeting ligands or bioactive molecules, further enhance their therapeutic and diagnostic potential by allowing precise targeting, reducing immune responses, and prolonging circulation times. Nanoporous materials also hold great promise in tissue engineering, where they can serve as scaffolds that mimic the extracellular matrix, supporting cell adhesion, differentiation, and tissue regeneration. Additionally, their large surface areas facilitate biomolecule immobilization, enabling the development of sensitive biosensors and offering advancements in disease detection. This paper provides a comprehensive review of the sol–gel method for synthesizing and functionalizing nanoporous structures, underscoring their significant biomedical applications. It also delves into their promising future potential in revolutionizing drug delivery, advancing tissue engineering, and enhancing diagnostic systems.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 35\",\"pages\":\" 10715-10742\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00958h\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00958h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Functionalized nanoporous architectures derived from sol–gel processes for advanced biomedical applications
The sol–gel method is a highly versatile and precise technique, making it a powerful tool for the synthesis and functionalization of nanoporous materials that play a critical role in advancing biomedical applications. Nanoporous structures, due to their unique pore architectures and high surface areas, offer significant advantages in drug delivery systems, tissue engineering, biosensing, and diagnostic technologies. These materials can efficiently encapsulate and release bioactive compounds, such as proteins, nucleic acids, and chemotherapeutic agents, making them ideal candidates for targeted therapies. The sol–gel process enables the tailored design of nanoporous materials with adjustable pore sizes, surface chemistry, and electrostatic properties, enhancing their compatibility with biological systems. Functionalization techniques, including PEGylation and surface modification with targeting ligands or bioactive molecules, further enhance their therapeutic and diagnostic potential by allowing precise targeting, reducing immune responses, and prolonging circulation times. Nanoporous materials also hold great promise in tissue engineering, where they can serve as scaffolds that mimic the extracellular matrix, supporting cell adhesion, differentiation, and tissue regeneration. Additionally, their large surface areas facilitate biomolecule immobilization, enabling the development of sensitive biosensors and offering advancements in disease detection. This paper provides a comprehensive review of the sol–gel method for synthesizing and functionalizing nanoporous structures, underscoring their significant biomedical applications. It also delves into their promising future potential in revolutionizing drug delivery, advancing tissue engineering, and enhancing diagnostic systems.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices