全氟化碳液体通气与组织清除术肺内成像深度比较

IF 2.3
Pascal Detampel, Wolf Heusermann, Katarzyna M Wojcik, Bryan G Yipp, Matthias Amrein
{"title":"全氟化碳液体通气与组织清除术肺内成像深度比较","authors":"Pascal Detampel, Wolf Heusermann, Katarzyna M Wojcik, Bryan G Yipp, Matthias Amrein","doi":"10.1002/jbio.202500145","DOIUrl":null,"url":null,"abstract":"<p><p>Intravital lung imaging has been employed to study physiological and pathophysiological processes related to nanoparticle deposition in the alveolar lung, particularly in the context of air pollution and drug delivery. However, optical imaging depth is limited, often attributed to the refractive index (RI) mismatch at the alveolar air-tissue interface. To investigate this, we evaluated two complementary strategies. First, we demonstrated that eliminating the RI mismatch via partial liquid ventilation with oxygenated perfluorocarbon (PFC) did not enhance the imaging depth. A second approach, utilizing ex vivo optical tissue clearing (with RI matching), was only successful in improving imaging penetration depth if it included removal of scattering lipids such as pulmonary surfactant. Nevertheless, partial liquid ventilation with PFC in vivo enabled the homogeneous delivery of nanoparticles to the alveoli, allowing real-time observation of their interactions with lung epithelium. This finding opens new avenues for studying inhaled particulates and optimizing inhalation-based drug delivery.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500145"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Imaging Depth of Intravital Lung Imaging Using Perfluorocarbon-Based Liquid Ventilation With Tissue Clearing for Deep-Tissue Imaging.\",\"authors\":\"Pascal Detampel, Wolf Heusermann, Katarzyna M Wojcik, Bryan G Yipp, Matthias Amrein\",\"doi\":\"10.1002/jbio.202500145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intravital lung imaging has been employed to study physiological and pathophysiological processes related to nanoparticle deposition in the alveolar lung, particularly in the context of air pollution and drug delivery. However, optical imaging depth is limited, often attributed to the refractive index (RI) mismatch at the alveolar air-tissue interface. To investigate this, we evaluated two complementary strategies. First, we demonstrated that eliminating the RI mismatch via partial liquid ventilation with oxygenated perfluorocarbon (PFC) did not enhance the imaging depth. A second approach, utilizing ex vivo optical tissue clearing (with RI matching), was only successful in improving imaging penetration depth if it included removal of scattering lipids such as pulmonary surfactant. Nevertheless, partial liquid ventilation with PFC in vivo enabled the homogeneous delivery of nanoparticles to the alveoli, allowing real-time observation of their interactions with lung epithelium. This finding opens new avenues for studying inhaled particulates and optimizing inhalation-based drug delivery.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202500145\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202500145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

活体肺成像已被用于研究与肺泡中纳米颗粒沉积相关的生理和病理生理过程,特别是在空气污染和药物输送的背景下。然而,光学成像深度有限,通常归因于肺泡空气-组织界面的折射率(RI)不匹配。为了研究这一点,我们评估了两种互补的策略。首先,我们证明通过含氧全氟碳(PFC)部分液体通气消除RI错配并不能增强成像深度。第二种方法是利用离体光学组织清除(与RI匹配),只有当它包括去除散射脂质(如肺表面活性剂)时,才能成功提高成像穿透深度。然而,体内PFC部分液体通气使得纳米颗粒均匀地递送到肺泡,从而可以实时观察它们与肺上皮的相互作用。这一发现为研究吸入微粒和优化吸入给药开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Imaging Depth of Intravital Lung Imaging Using Perfluorocarbon-Based Liquid Ventilation With Tissue Clearing for Deep-Tissue Imaging.

Intravital lung imaging has been employed to study physiological and pathophysiological processes related to nanoparticle deposition in the alveolar lung, particularly in the context of air pollution and drug delivery. However, optical imaging depth is limited, often attributed to the refractive index (RI) mismatch at the alveolar air-tissue interface. To investigate this, we evaluated two complementary strategies. First, we demonstrated that eliminating the RI mismatch via partial liquid ventilation with oxygenated perfluorocarbon (PFC) did not enhance the imaging depth. A second approach, utilizing ex vivo optical tissue clearing (with RI matching), was only successful in improving imaging penetration depth if it included removal of scattering lipids such as pulmonary surfactant. Nevertheless, partial liquid ventilation with PFC in vivo enabled the homogeneous delivery of nanoparticles to the alveoli, allowing real-time observation of their interactions with lung epithelium. This finding opens new avenues for studying inhaled particulates and optimizing inhalation-based drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信