Wenpin Hou, Qi Liu, Huifang Ma, Yilong Qu, Zhicheng Ji
{"title":"评估生物医学图像分类中一次学习和可解释性的大型多模态模型。","authors":"Wenpin Hou, Qi Liu, Huifang Ma, Yilong Qu, Zhicheng Ji","doi":"10.1002/aisy.202400947","DOIUrl":null,"url":null,"abstract":"<p><p>Image classification plays a pivotal role in analyzing biomedical images, serving as a cornerstone for both biological research and clinical diagnostics. It is demonstrated that large multimodal models (LMMs), like GPT-4, excel in one-shot learning, generalization, interpretability, and text-driven image classification across diverse biomedical tasks. These tasks include the classification of tissues, cell types, cellular states, and disease status. LMMs stand out from traditional single-modal classification approaches, which often require large training datasets and offer limited interpretability.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360630/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing Large Multimodal Models for One-Shot Learning and Interpretability in Biomedical Image Classification.\",\"authors\":\"Wenpin Hou, Qi Liu, Huifang Ma, Yilong Qu, Zhicheng Ji\",\"doi\":\"10.1002/aisy.202400947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image classification plays a pivotal role in analyzing biomedical images, serving as a cornerstone for both biological research and clinical diagnostics. It is demonstrated that large multimodal models (LMMs), like GPT-4, excel in one-shot learning, generalization, interpretability, and text-driven image classification across diverse biomedical tasks. These tasks include the classification of tissues, cell types, cellular states, and disease status. LMMs stand out from traditional single-modal classification approaches, which often require large training datasets and offer limited interpretability.</p>\",\"PeriodicalId\":93858,\"journal\":{\"name\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202400947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202400947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Assessing Large Multimodal Models for One-Shot Learning and Interpretability in Biomedical Image Classification.
Image classification plays a pivotal role in analyzing biomedical images, serving as a cornerstone for both biological research and clinical diagnostics. It is demonstrated that large multimodal models (LMMs), like GPT-4, excel in one-shot learning, generalization, interpretability, and text-driven image classification across diverse biomedical tasks. These tasks include the classification of tissues, cell types, cellular states, and disease status. LMMs stand out from traditional single-modal classification approaches, which often require large training datasets and offer limited interpretability.