环丁氟仑的抗真菌谱和CcSdh蛋白的多点突变赋予了桃蚜的抗性。

IF 5.8
Xinchang Hao, Yiwen Li, Zhaoyue Hang, Yue Chen, Yidong Tang, Jianqiang Miao, Qin Peng, Xili Liu
{"title":"环丁氟仑的抗真菌谱和CcSdh蛋白的多点突变赋予了桃蚜的抗性。","authors":"Xinchang Hao, Yiwen Li, Zhaoyue Hang, Yue Chen, Yidong Tang, Jianqiang Miao, Qin Peng, Xili Liu","doi":"10.1007/s44154-025-00251-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cucumber target spot, a major disease that threatens cucumber production, is caused by Corynespora cassiicola. Cyclobutrifluram, a novel succinate dehydrogenase inhibitor (SDHI) developed by Syngenta, has demonstrated strong inhibitory activity against various plant pathogenic fungi and nematodes. However, its antifungal spectrum, resistance risk as well as underlying mechanisms of resistance in C. cassiicola remain poorly understood. In this study, cyclobutrifluram exhibited potent inhibitory activity against anamorphic fungi and selected ascomycetes, with the mean sensitivity of C. cassiicola isolates to the fungicide being 0.98 ± 1.26 μg/mL. Additionally, five laboratory-derived cyclobutrifluram-resistant mutants showed comparable or lower biological fitness than their respective parental isolates. The resistant mutants and field isolates were also found to possess nine distinct point mutations in the CcSdhB, CcSdhC or CcSdhD genes. Finally, cyclobutrifluram exhibited positive cross-resistance with other SDHIs, with the resistance levels varying depending on the specific mutations present. In conclusion, cyclobutrifluram was found to be effective against anamorphic fungi and selected ascomycetes. C. cassiicola's risk of resistance development to cyclobutrifluram was assessed as moderate to high and was primarily associated with mutations in CcSdh genes.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"5 1","pages":"53"},"PeriodicalIF":5.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399480/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antifungal spectrum of cyclobutrifluram and multi-point mutations in CcSdh proteins confer resistance in Corynespora cassiicola.\",\"authors\":\"Xinchang Hao, Yiwen Li, Zhaoyue Hang, Yue Chen, Yidong Tang, Jianqiang Miao, Qin Peng, Xili Liu\",\"doi\":\"10.1007/s44154-025-00251-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cucumber target spot, a major disease that threatens cucumber production, is caused by Corynespora cassiicola. Cyclobutrifluram, a novel succinate dehydrogenase inhibitor (SDHI) developed by Syngenta, has demonstrated strong inhibitory activity against various plant pathogenic fungi and nematodes. However, its antifungal spectrum, resistance risk as well as underlying mechanisms of resistance in C. cassiicola remain poorly understood. In this study, cyclobutrifluram exhibited potent inhibitory activity against anamorphic fungi and selected ascomycetes, with the mean sensitivity of C. cassiicola isolates to the fungicide being 0.98 ± 1.26 μg/mL. Additionally, five laboratory-derived cyclobutrifluram-resistant mutants showed comparable or lower biological fitness than their respective parental isolates. The resistant mutants and field isolates were also found to possess nine distinct point mutations in the CcSdhB, CcSdhC or CcSdhD genes. Finally, cyclobutrifluram exhibited positive cross-resistance with other SDHIs, with the resistance levels varying depending on the specific mutations present. In conclusion, cyclobutrifluram was found to be effective against anamorphic fungi and selected ascomycetes. C. cassiicola's risk of resistance development to cyclobutrifluram was assessed as moderate to high and was primarily associated with mutations in CcSdh genes.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"5 1\",\"pages\":\"53\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399480/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-025-00251-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-025-00251-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

黄瓜靶斑病是危害黄瓜生产的主要病害之一。先正达公司开发的新型琥珀酸脱氢酶抑制剂环丁氟仑(Cyclobutrifluram)对多种植物病原真菌和线虫具有很强的抑制活性。然而,对其抗真菌谱、耐药风险以及潜在的抗性机制仍知之甚少。在本研究中,环丁氟仑对变形真菌和部分子囊菌具有较强的抑制活性,对cassiicola菌株的平均敏感性为0.98±1.26 μg/mL。此外,五个实验室衍生的环丁氟仑耐药突变体的生物适应性与其亲本分离株相当或更低。耐药突变体和田间分离株在CcSdhB、CcSdhC和CcSdhD基因中也发现了9个不同的点突变。最后,环丁氟仑与其他SDHIs表现出正交叉抗性,抗性水平根据存在的特定突变而变化。综上所述,环丁氟仑对变形真菌和部分子囊菌有一定的抑制作用。卡西菌对环丁氟仑产生耐药性的风险被评估为中等至高,主要与CcSdh基因突变有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Antifungal spectrum of cyclobutrifluram and multi-point mutations in CcSdh proteins confer resistance in Corynespora cassiicola.

Antifungal spectrum of cyclobutrifluram and multi-point mutations in CcSdh proteins confer resistance in Corynespora cassiicola.

Antifungal spectrum of cyclobutrifluram and multi-point mutations in CcSdh proteins confer resistance in Corynespora cassiicola.

Antifungal spectrum of cyclobutrifluram and multi-point mutations in CcSdh proteins confer resistance in Corynespora cassiicola.

Cucumber target spot, a major disease that threatens cucumber production, is caused by Corynespora cassiicola. Cyclobutrifluram, a novel succinate dehydrogenase inhibitor (SDHI) developed by Syngenta, has demonstrated strong inhibitory activity against various plant pathogenic fungi and nematodes. However, its antifungal spectrum, resistance risk as well as underlying mechanisms of resistance in C. cassiicola remain poorly understood. In this study, cyclobutrifluram exhibited potent inhibitory activity against anamorphic fungi and selected ascomycetes, with the mean sensitivity of C. cassiicola isolates to the fungicide being 0.98 ± 1.26 μg/mL. Additionally, five laboratory-derived cyclobutrifluram-resistant mutants showed comparable or lower biological fitness than their respective parental isolates. The resistant mutants and field isolates were also found to possess nine distinct point mutations in the CcSdhB, CcSdhC or CcSdhD genes. Finally, cyclobutrifluram exhibited positive cross-resistance with other SDHIs, with the resistance levels varying depending on the specific mutations present. In conclusion, cyclobutrifluram was found to be effective against anamorphic fungi and selected ascomycetes. C. cassiicola's risk of resistance development to cyclobutrifluram was assessed as moderate to high and was primarily associated with mutations in CcSdh genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信