{"title":"小麦冠腐病:病原生物学、寄主反应和管理策略。","authors":"Lefan Pu, Qiaojun Jin, Xuewei Cai, Chenfei Qu, Jiayi Zhang, Xingxuan Bai, Jia Guo, Zhensheng Kang, Jun Guo","doi":"10.1007/s44154-025-00247-4","DOIUrl":null,"url":null,"abstract":"<p><p>Crown rot (CR), caused by Fusarium pseudograminearum and related species, is a soil-borne disease threatening global wheat (Triticum aestivum) production, with yield losses exceeding 50% under severe infections. The rapid spread of CR in China, driven by straw retention policies and warming climates, highlights the need for interdisciplinary solutions. This review systematically integrates advances in CR research and addresses pathogen biology, host resistance, and sustainable management. Research on pathogen biology has clarified the distribution of major Fusarium species, the infection process, toxin profiles, mating types, and virulence factors. Host resistance to CR is quantitatively controlled, and through quantitative trait locus (QTL) mapping and omics-based approaches, several genes encoding transcription factors, receptor-like kinases and enzymes, signaling pathways and secondary metabolites involved in resistance have been identified. Advances in control strategies, including chemical and biological methods, as well as the application of nanotechnology, have shown promising results. The review also highlights future research directions, such as investigating the molecular mechanisms of pathogen-host interactions, identifying effectors and susceptibility genes for CR in wheat, and integrating multi-omics studies with high-resolution genetic maps to pinpoint CR resistance genes. These efforts are crucial for improving our understanding of the disease and developing effective management strategies.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"5 1","pages":"52"},"PeriodicalIF":5.8000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375530/pdf/","citationCount":"0","resultStr":"{\"title\":\"Crown rot in wheat: pathogen biology, host responses, and management strategies.\",\"authors\":\"Lefan Pu, Qiaojun Jin, Xuewei Cai, Chenfei Qu, Jiayi Zhang, Xingxuan Bai, Jia Guo, Zhensheng Kang, Jun Guo\",\"doi\":\"10.1007/s44154-025-00247-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crown rot (CR), caused by Fusarium pseudograminearum and related species, is a soil-borne disease threatening global wheat (Triticum aestivum) production, with yield losses exceeding 50% under severe infections. The rapid spread of CR in China, driven by straw retention policies and warming climates, highlights the need for interdisciplinary solutions. This review systematically integrates advances in CR research and addresses pathogen biology, host resistance, and sustainable management. Research on pathogen biology has clarified the distribution of major Fusarium species, the infection process, toxin profiles, mating types, and virulence factors. Host resistance to CR is quantitatively controlled, and through quantitative trait locus (QTL) mapping and omics-based approaches, several genes encoding transcription factors, receptor-like kinases and enzymes, signaling pathways and secondary metabolites involved in resistance have been identified. Advances in control strategies, including chemical and biological methods, as well as the application of nanotechnology, have shown promising results. The review also highlights future research directions, such as investigating the molecular mechanisms of pathogen-host interactions, identifying effectors and susceptibility genes for CR in wheat, and integrating multi-omics studies with high-resolution genetic maps to pinpoint CR resistance genes. These efforts are crucial for improving our understanding of the disease and developing effective management strategies.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"5 1\",\"pages\":\"52\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-025-00247-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-025-00247-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crown rot in wheat: pathogen biology, host responses, and management strategies.
Crown rot (CR), caused by Fusarium pseudograminearum and related species, is a soil-borne disease threatening global wheat (Triticum aestivum) production, with yield losses exceeding 50% under severe infections. The rapid spread of CR in China, driven by straw retention policies and warming climates, highlights the need for interdisciplinary solutions. This review systematically integrates advances in CR research and addresses pathogen biology, host resistance, and sustainable management. Research on pathogen biology has clarified the distribution of major Fusarium species, the infection process, toxin profiles, mating types, and virulence factors. Host resistance to CR is quantitatively controlled, and through quantitative trait locus (QTL) mapping and omics-based approaches, several genes encoding transcription factors, receptor-like kinases and enzymes, signaling pathways and secondary metabolites involved in resistance have been identified. Advances in control strategies, including chemical and biological methods, as well as the application of nanotechnology, have shown promising results. The review also highlights future research directions, such as investigating the molecular mechanisms of pathogen-host interactions, identifying effectors and susceptibility genes for CR in wheat, and integrating multi-omics studies with high-resolution genetic maps to pinpoint CR resistance genes. These efforts are crucial for improving our understanding of the disease and developing effective management strategies.