保持结构种群的多样性。

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-08-08 eCollection Date: 2025-08-01 DOI:10.1093/pnasnexus/pgaf252
David A Brewster, Jakub Svoboda, Dylan Roscow, Krishnendu Chatterjee, Josef Tkadlec, Martin A Nowak
{"title":"保持结构种群的多样性。","authors":"David A Brewster, Jakub Svoboda, Dylan Roscow, Krishnendu Chatterjee, Josef Tkadlec, Martin A Nowak","doi":"10.1093/pnasnexus/pgaf252","DOIUrl":null,"url":null,"abstract":"<p><p>We examine population structures for their ability to maintain diversity in neutral evolution. We use the general framework of evolutionary graph theory and consider birth-death (bd) and death-birth (db) updating. The population is of size <i>N</i>. Initially all individuals represent different types. The basic question is: what is the time <math><msub><mi>T</mi> <mi>N</mi></msub> </math> until one type takes over the population? This time is known as consensus time in computer science and as total coalescent time in evolutionary biology. For the complete graph, it is known that <math><msub><mi>T</mi> <mi>N</mi></msub> </math> is quadratic in <i>N</i> for db and bd. For the cycle, we prove that <math><msub><mi>T</mi> <mi>N</mi></msub> </math> is cubic in <i>N</i> for db and bd. For the star, we prove that <math><msub><mi>T</mi> <mi>N</mi></msub> </math> is cubic for bd and quasilinear ( <math><mi>N</mi> <mi>log</mi> <mspace></mspace> <mi>N</mi></math> ) for db. For the double star, we show that <math><msub><mi>T</mi> <mi>N</mi></msub> </math> is quartic for bd. We derive upper and lower bounds for all undirected graphs for bd and db. We also show the Pareto front of graphs (of size <math><mi>N</mi> <mo>=</mo> <mn>8</mn></math> ) that maintain diversity the longest for bd and db. Further, we show that some graphs that quickly homogenize can maintain high levels of diversity longer than graphs that slowly homogenize. For directed graphs, we give simple contracting star-like structures that have superexponential time scales for maintaining diversity.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 8","pages":"pgaf252"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363668/pdf/","citationCount":"0","resultStr":"{\"title\":\"Maintaining diversity in structured populations.\",\"authors\":\"David A Brewster, Jakub Svoboda, Dylan Roscow, Krishnendu Chatterjee, Josef Tkadlec, Martin A Nowak\",\"doi\":\"10.1093/pnasnexus/pgaf252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We examine population structures for their ability to maintain diversity in neutral evolution. We use the general framework of evolutionary graph theory and consider birth-death (bd) and death-birth (db) updating. The population is of size <i>N</i>. Initially all individuals represent different types. The basic question is: what is the time <math><msub><mi>T</mi> <mi>N</mi></msub> </math> until one type takes over the population? This time is known as consensus time in computer science and as total coalescent time in evolutionary biology. For the complete graph, it is known that <math><msub><mi>T</mi> <mi>N</mi></msub> </math> is quadratic in <i>N</i> for db and bd. For the cycle, we prove that <math><msub><mi>T</mi> <mi>N</mi></msub> </math> is cubic in <i>N</i> for db and bd. For the star, we prove that <math><msub><mi>T</mi> <mi>N</mi></msub> </math> is cubic for bd and quasilinear ( <math><mi>N</mi> <mi>log</mi> <mspace></mspace> <mi>N</mi></math> ) for db. For the double star, we show that <math><msub><mi>T</mi> <mi>N</mi></msub> </math> is quartic for bd. We derive upper and lower bounds for all undirected graphs for bd and db. We also show the Pareto front of graphs (of size <math><mi>N</mi> <mo>=</mo> <mn>8</mn></math> ) that maintain diversity the longest for bd and db. Further, we show that some graphs that quickly homogenize can maintain high levels of diversity longer than graphs that slowly homogenize. For directed graphs, we give simple contracting star-like structures that have superexponential time scales for maintaining diversity.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 8\",\"pages\":\"pgaf252\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363668/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了种群结构在中性进化中保持多样性的能力。我们使用进化图论的一般框架,并考虑出生-死亡(bd)和死亡-出生(db)更新。种群大小为n,最初所有个体代表不同的类型。最基本的问题是:一种种群占据整个种群的时间是多少?这段时间在计算机科学中被称为共识时间,在进化生物学中被称为总凝聚时间。对于完全图,已知tn对于db和bd是N的二次元。对于循环,我们证明tn对于db和bd是N的三次元。对于星形,我们证明tn对于bd是三次元,对于db是拟线性的(nlogn)。对于双星,我们证明了tn对于bd是四次的。我们导出了bd和db的所有无向图的上界和下界。我们还展示了图(大小N = 8)的帕累托前沿,它们在bd和db中保持了最长的多样性。此外,我们表明,一些快速同质化的图可以比缓慢同质化的图保持高水平的多样性更长。对于有向图,我们给出了具有超指数时间尺度的简单收缩星形结构来维持多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maintaining diversity in structured populations.

Maintaining diversity in structured populations.

Maintaining diversity in structured populations.

Maintaining diversity in structured populations.

We examine population structures for their ability to maintain diversity in neutral evolution. We use the general framework of evolutionary graph theory and consider birth-death (bd) and death-birth (db) updating. The population is of size N. Initially all individuals represent different types. The basic question is: what is the time T N until one type takes over the population? This time is known as consensus time in computer science and as total coalescent time in evolutionary biology. For the complete graph, it is known that T N is quadratic in N for db and bd. For the cycle, we prove that T N is cubic in N for db and bd. For the star, we prove that T N is cubic for bd and quasilinear ( N log N ) for db. For the double star, we show that T N is quartic for bd. We derive upper and lower bounds for all undirected graphs for bd and db. We also show the Pareto front of graphs (of size N = 8 ) that maintain diversity the longest for bd and db. Further, we show that some graphs that quickly homogenize can maintain high levels of diversity longer than graphs that slowly homogenize. For directed graphs, we give simple contracting star-like structures that have superexponential time scales for maintaining diversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信