碳水化合物-粘土界面的保水机制。

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-08-09 eCollection Date: 2025-08-01 DOI:10.1093/pnasnexus/pgaf259
Sabrina E Kelch, Benjamin Barrios-Cerda, Yeonsoo Park, Eric Ferrage, Ludmilla Aristilde
{"title":"碳水化合物-粘土界面的保水机制。","authors":"Sabrina E Kelch, Benjamin Barrios-Cerda, Yeonsoo Park, Eric Ferrage, Ludmilla Aristilde","doi":"10.1093/pnasnexus/pgaf259","DOIUrl":null,"url":null,"abstract":"<p><p>Clay minerals are well documented to facilitate the retention of water and organic matter in terrestrial soils, Martian regolith, and meteorites. Yet, the mechanisms underlying water trapping within these mineral-organic matter associations are poorly understood. Here, we investigate these mechanisms with montmorillonite, a smectite clay, populated with carbohydrates of different structures. By capturing relative proportion of bound versus freely exchangeable waters by mass spectrometry during thermogravimetric analysis, we observe up to a 2.3-fold increase in bound waters in samples with adsorbed carbohydrates. Temperature-dependent carbon loss from adsorbed <sup>13</sup>C-labeled carbohydrate determines increase in carbohydrate trapping at low moisture. We determine that the amount of trapped organic carbon is correlated positively with the population of bound waters. Molecular dynamics simulations of a carbohydrate-populated clay nanopore identify different interfacial waters, involving direct single or multiple hydrogen bonds on the clay surface without or with simultaneous hydrogen bonding with adsorbed carbohydrates. Quantum mechanics-based computations highlight up to 5-fold greater binding energy for bound waters associated with adsorbed carbohydrates on the clay surface, compared to bound waters in the absence of carbohydrates. Thus, our experimental and theoretical results collectively reveal that interfacial waters bridging hydrated organic matter to the clay surface facilitate water trapping within mineral-organic associations.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 8","pages":"pgaf259"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374227/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of water retention at carbohydrate-clay interfaces.\",\"authors\":\"Sabrina E Kelch, Benjamin Barrios-Cerda, Yeonsoo Park, Eric Ferrage, Ludmilla Aristilde\",\"doi\":\"10.1093/pnasnexus/pgaf259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clay minerals are well documented to facilitate the retention of water and organic matter in terrestrial soils, Martian regolith, and meteorites. Yet, the mechanisms underlying water trapping within these mineral-organic matter associations are poorly understood. Here, we investigate these mechanisms with montmorillonite, a smectite clay, populated with carbohydrates of different structures. By capturing relative proportion of bound versus freely exchangeable waters by mass spectrometry during thermogravimetric analysis, we observe up to a 2.3-fold increase in bound waters in samples with adsorbed carbohydrates. Temperature-dependent carbon loss from adsorbed <sup>13</sup>C-labeled carbohydrate determines increase in carbohydrate trapping at low moisture. We determine that the amount of trapped organic carbon is correlated positively with the population of bound waters. Molecular dynamics simulations of a carbohydrate-populated clay nanopore identify different interfacial waters, involving direct single or multiple hydrogen bonds on the clay surface without or with simultaneous hydrogen bonding with adsorbed carbohydrates. Quantum mechanics-based computations highlight up to 5-fold greater binding energy for bound waters associated with adsorbed carbohydrates on the clay surface, compared to bound waters in the absence of carbohydrates. Thus, our experimental and theoretical results collectively reveal that interfacial waters bridging hydrated organic matter to the clay surface facilitate water trapping within mineral-organic associations.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 8\",\"pages\":\"pgaf259\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

粘土矿物在陆地土壤、火星风化层和陨石中有助于水和有机物的保留。然而,在这些矿物-有机物结合中,水捕获的机制尚不清楚。在这里,我们用蒙脱土来研究这些机制,蒙脱土是一种蒙脱石粘土,填充不同结构的碳水化合物。在热重分析过程中,通过质谱法捕获束缚水与自由交换水的相对比例,我们观察到吸附碳水化合物的样品中束缚水增加了2.3倍。吸附13c标记碳水化合物的温度依赖性碳损失决定了低湿度下碳水化合物捕获的增加。我们确定捕获有机碳的数量与束缚水的数量呈正相关。碳水化合物填充粘土纳米孔的分子动力学模拟确定了不同的界面水,包括粘土表面直接的单个或多个氢键,没有或同时与吸附的碳水化合物形成氢键。基于量子力学的计算强调,与不含碳水化合物的结合水相比,与粘土表面吸附碳水化合物相关的结合水的结合能高出5倍。因此,我们的实验和理论结果共同表明,连接水合有机质到粘土表面的界面水促进了矿物-有机组合中的水捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanisms of water retention at carbohydrate-clay interfaces.

Mechanisms of water retention at carbohydrate-clay interfaces.

Mechanisms of water retention at carbohydrate-clay interfaces.

Mechanisms of water retention at carbohydrate-clay interfaces.

Clay minerals are well documented to facilitate the retention of water and organic matter in terrestrial soils, Martian regolith, and meteorites. Yet, the mechanisms underlying water trapping within these mineral-organic matter associations are poorly understood. Here, we investigate these mechanisms with montmorillonite, a smectite clay, populated with carbohydrates of different structures. By capturing relative proportion of bound versus freely exchangeable waters by mass spectrometry during thermogravimetric analysis, we observe up to a 2.3-fold increase in bound waters in samples with adsorbed carbohydrates. Temperature-dependent carbon loss from adsorbed 13C-labeled carbohydrate determines increase in carbohydrate trapping at low moisture. We determine that the amount of trapped organic carbon is correlated positively with the population of bound waters. Molecular dynamics simulations of a carbohydrate-populated clay nanopore identify different interfacial waters, involving direct single or multiple hydrogen bonds on the clay surface without or with simultaneous hydrogen bonding with adsorbed carbohydrates. Quantum mechanics-based computations highlight up to 5-fold greater binding energy for bound waters associated with adsorbed carbohydrates on the clay surface, compared to bound waters in the absence of carbohydrates. Thus, our experimental and theoretical results collectively reveal that interfacial waters bridging hydrated organic matter to the clay surface facilitate water trapping within mineral-organic associations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信