IL-6基因扰动模拟IL-6抑制与较低的心脏代谢风险相关。

IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Lanyue Zhang, Murad Omarov, Lingling Xu, Emil deGoma, Pradeep Natarajan, Marios K. Georgakis
{"title":"IL-6基因扰动模拟IL-6抑制与较低的心脏代谢风险相关。","authors":"Lanyue Zhang, Murad Omarov, Lingling Xu, Emil deGoma, Pradeep Natarajan, Marios K. Georgakis","doi":"10.1038/s44161-025-00700-7","DOIUrl":null,"url":null,"abstract":"Human genetics supports a causal involvement of IL-6 signaling in atherosclerotic cardiovascular disease, prompting the clinical development of anti-IL-6 therapies. Genetic evidence has historically focused on IL6R missense variants, but emerging cardiovascular treatments target IL-6, not its receptor, questioning the translatability of genetic findings. Here we develop a genetic instrument for IL-6 signaling downregulation comprising IL6 locus variants that mimic the effects of the anti-IL-6 antibody ziltivekimab and use it to predict the effects of IL-6 inhibition on cardiometabolic and safety endpoints. Similar to IL6R, we found that genetically downregulated IL-6 signaling via IL6 perturbation is associated with lower lifetime risks of coronary artery disease, peripheral artery disease and ischemic atherosclerotic stroke in individuals of European and East Asian ancestry. Unlike IL6R missense variants linked to bacterial infections, the IL6 instrument was associated with lower risk of pneumonia hospitalization. Our data suggest that IL-6 inhibition can reduce cardiovascular risk without major unexpected safety concerns. Zhang et al. show that genetically simulated IL-6 inhibition is associated with a reduced risk of cardiovascular disease and no increase in infection risk, supporting the use of emerging pharmacological treatments targeting IL-6 rather than its receptor.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 9","pages":"1172-1186"},"PeriodicalIF":10.8000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436178/pdf/","citationCount":"0","resultStr":"{\"title\":\"IL6 genetic perturbation mimicking IL-6 inhibition is associated with lower cardiometabolic risk\",\"authors\":\"Lanyue Zhang, Murad Omarov, Lingling Xu, Emil deGoma, Pradeep Natarajan, Marios K. Georgakis\",\"doi\":\"10.1038/s44161-025-00700-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human genetics supports a causal involvement of IL-6 signaling in atherosclerotic cardiovascular disease, prompting the clinical development of anti-IL-6 therapies. Genetic evidence has historically focused on IL6R missense variants, but emerging cardiovascular treatments target IL-6, not its receptor, questioning the translatability of genetic findings. Here we develop a genetic instrument for IL-6 signaling downregulation comprising IL6 locus variants that mimic the effects of the anti-IL-6 antibody ziltivekimab and use it to predict the effects of IL-6 inhibition on cardiometabolic and safety endpoints. Similar to IL6R, we found that genetically downregulated IL-6 signaling via IL6 perturbation is associated with lower lifetime risks of coronary artery disease, peripheral artery disease and ischemic atherosclerotic stroke in individuals of European and East Asian ancestry. Unlike IL6R missense variants linked to bacterial infections, the IL6 instrument was associated with lower risk of pneumonia hospitalization. Our data suggest that IL-6 inhibition can reduce cardiovascular risk without major unexpected safety concerns. Zhang et al. show that genetically simulated IL-6 inhibition is associated with a reduced risk of cardiovascular disease and no increase in infection risk, supporting the use of emerging pharmacological treatments targeting IL-6 rather than its receptor.\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\"4 9\",\"pages\":\"1172-1186\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436178/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44161-025-00700-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-025-00700-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

人类遗传学支持IL-6信号在动脉粥样硬化性心血管疾病中的因果关系,促进了抗IL-6治疗的临床发展。遗传证据历来集中在IL6R错义变异上,但新兴的心血管治疗针对的是IL-6,而不是其受体,这对遗传发现的可翻译性提出了质疑。在这里,我们开发了一种IL-6信号下调的遗传工具,包括IL-6位点变异,模拟抗IL-6抗体ziltivekimab的作用,并用它来预测IL-6抑制对心脏代谢和安全终点的影响。与IL6R类似,研究人员发现,在欧洲和东亚血统的个体中,IL-6信号通过IL-6扰动而基因下调与冠状动脉疾病、外周动脉疾病和缺血性动脉粥样硬化性中风的终生风险降低有关。与与细菌感染相关的IL6R错义变体不同,IL6仪器与较低的肺炎住院风险相关。我们的数据表明,抑制IL-6可以降低心血管风险,而不会出现重大的意外安全问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

IL6 genetic perturbation mimicking IL-6 inhibition is associated with lower cardiometabolic risk

IL6 genetic perturbation mimicking IL-6 inhibition is associated with lower cardiometabolic risk
Human genetics supports a causal involvement of IL-6 signaling in atherosclerotic cardiovascular disease, prompting the clinical development of anti-IL-6 therapies. Genetic evidence has historically focused on IL6R missense variants, but emerging cardiovascular treatments target IL-6, not its receptor, questioning the translatability of genetic findings. Here we develop a genetic instrument for IL-6 signaling downregulation comprising IL6 locus variants that mimic the effects of the anti-IL-6 antibody ziltivekimab and use it to predict the effects of IL-6 inhibition on cardiometabolic and safety endpoints. Similar to IL6R, we found that genetically downregulated IL-6 signaling via IL6 perturbation is associated with lower lifetime risks of coronary artery disease, peripheral artery disease and ischemic atherosclerotic stroke in individuals of European and East Asian ancestry. Unlike IL6R missense variants linked to bacterial infections, the IL6 instrument was associated with lower risk of pneumonia hospitalization. Our data suggest that IL-6 inhibition can reduce cardiovascular risk without major unexpected safety concerns. Zhang et al. show that genetically simulated IL-6 inhibition is associated with a reduced risk of cardiovascular disease and no increase in infection risk, supporting the use of emerging pharmacological treatments targeting IL-6 rather than its receptor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信