清洁纤毛输出非纤毛污染的DeleteROI。

microPublication biology Pub Date : 2025-08-14 eCollection Date: 2025-01-01 DOI:10.17912/micropub.biology.001670
Jeffrey J Anuszczyk, Michael W Stuck, Thibaut Eguether, Gregory J Pazour
{"title":"清洁纤毛输出非纤毛污染的DeleteROI。","authors":"Jeffrey J Anuszczyk, Michael W Stuck, Thibaut Eguether, Gregory J Pazour","doi":"10.17912/micropub.biology.001670","DOIUrl":null,"url":null,"abstract":"<p><p>The ImageJ plugin CiliaQ developed by Hansen and colleagues (Hansen et al., 2021) provides for sophisticated analysis of ciliary parameters in three-dimensional space. However, midbodies and other non-ciliary structures can contaminate the output and require significant effort to remove. Furthermore, the manual removal of contamination risks subjective bias as the data is not blinded to the investigator. To address these problems, we developed an ImageJ plugin that presents images of the cilia region-of-interests (ROIs) identified by CiliaQ in a clickable grid that allows for marking and automated removal of non-ciliary contaminants. To reduce subjective bias, our plugin works on a dataset of multiple images and presents the cilia ROIs randomly. If the dataset contains both control and experimental conditions, the cilia are randomly interspersed with no visible information about their experimental group, thus reducing subjective bias. After removal of contamination, the cleaned data is output maintaining the CiliaQ file formats initially used.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395279/pdf/","citationCount":"0","resultStr":"{\"title\":\"DeleteROI for Cleaning CiliaQ Output of Non-ciliary Contamination.\",\"authors\":\"Jeffrey J Anuszczyk, Michael W Stuck, Thibaut Eguether, Gregory J Pazour\",\"doi\":\"10.17912/micropub.biology.001670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ImageJ plugin CiliaQ developed by Hansen and colleagues (Hansen et al., 2021) provides for sophisticated analysis of ciliary parameters in three-dimensional space. However, midbodies and other non-ciliary structures can contaminate the output and require significant effort to remove. Furthermore, the manual removal of contamination risks subjective bias as the data is not blinded to the investigator. To address these problems, we developed an ImageJ plugin that presents images of the cilia region-of-interests (ROIs) identified by CiliaQ in a clickable grid that allows for marking and automated removal of non-ciliary contaminants. To reduce subjective bias, our plugin works on a dataset of multiple images and presents the cilia ROIs randomly. If the dataset contains both control and experimental conditions, the cilia are randomly interspersed with no visible information about their experimental group, thus reducing subjective bias. After removal of contamination, the cleaned data is output maintaining the CiliaQ file formats initially used.</p>\",\"PeriodicalId\":74192,\"journal\":{\"name\":\"microPublication biology\",\"volume\":\"2025 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395279/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microPublication biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17912/micropub.biology.001670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Hansen及其同事(Hansen et al., 2021)开发的ImageJ插件CiliaQ提供了三维空间中纤毛参数的复杂分析。然而,中间体和其他非纤毛结构可能会污染输出,需要付出很大的努力才能清除。此外,人工去除污染的风险主观偏见,因为数据不是盲目的研究者。为了解决这些问题,我们开发了一个ImageJ插件,该插件将CiliaQ识别的纤毛兴趣区域(roi)图像呈现在可点击的网格中,允许标记和自动去除非纤毛污染物。为了减少主观偏见,我们的插件在多个图像的数据集上工作,并随机呈现纤毛的roi。如果数据集同时包含对照和实验条件,纤毛是随机分布的,没有关于实验组的可见信息,从而减少了主观偏差。清除污染后,输出清理后的数据,并保持最初使用的CiliaQ文件格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DeleteROI for Cleaning CiliaQ Output of Non-ciliary Contamination.

DeleteROI for Cleaning CiliaQ Output of Non-ciliary Contamination.

The ImageJ plugin CiliaQ developed by Hansen and colleagues (Hansen et al., 2021) provides for sophisticated analysis of ciliary parameters in three-dimensional space. However, midbodies and other non-ciliary structures can contaminate the output and require significant effort to remove. Furthermore, the manual removal of contamination risks subjective bias as the data is not blinded to the investigator. To address these problems, we developed an ImageJ plugin that presents images of the cilia region-of-interests (ROIs) identified by CiliaQ in a clickable grid that allows for marking and automated removal of non-ciliary contaminants. To reduce subjective bias, our plugin works on a dataset of multiple images and presents the cilia ROIs randomly. If the dataset contains both control and experimental conditions, the cilia are randomly interspersed with no visible information about their experimental group, thus reducing subjective bias. After removal of contamination, the cleaned data is output maintaining the CiliaQ file formats initially used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信