Tim E Sluijter, Christian Roest, Derya Yakar, Thomas C Kwee
{"title":"聚焦CT尿路造影:一项调查血尿患者偶然发现相关性的随机试验。","authors":"Tim E Sluijter, Christian Roest, Derya Yakar, Thomas C Kwee","doi":"10.3390/diseases13080242","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Computed tomography urography (CTU) is routinely used to evaluate the upper urinary tract in patients with hematuria. CTU may detect incidental findings outside the urinary tract, but it remains unclear if this adds value. This study aimed to develop a deep learning algorithm that automatically segments and selectively visualizes the urinary tract on CTU. <b>Methods</b>: The urinary tract (kidneys, ureters, and urinary bladder) was manually segmented on 2 mm dual-phase CTU slices of 111 subjects. With this dataset, a deep learning-based AI was trained to automatically segment and selectively visualize the urinary tract on CTU scans (including accompanying unenhanced CT scans), which we dub \"focused view CTU\". Focused view CTU was technically optimized and tested in 39 subjects with hematuria. <b>Results</b>: The technically optimized focused view CTU algorithm provided complete visualization of 97.4% of kidneys, 80.8% of ureters, and 94.9% of urinary bladders. All urinary tract organs were completely visualized in 66.6% of cases. In these cases (excluding 33.3% of cases with incomplete visualization), focused view CTU intrinsically achieved a sensitivity, specificity, positive predictive value, and negative predictive value of 100.0%, 92.3%, 92.9%, and 100.0% for lesions in the urinary tract compared to unmodified CT, although interrater agreement was moderate (κ = 0.528). All incidental findings were successfully hidden by focused view CTU. <b>Conclusions</b>: Focused view CTU provides adequate urinary tract segmentation in most cases, but further research is needed to optimize the technique (segmentation does not succeed in about one-third of cases). It offers selective urinary tract visualization, potentially aiding in assessing relevance and cost-effectiveness of detecting incidental findings in hematuria patients through a prospective randomized trial.</p>","PeriodicalId":72832,"journal":{"name":"Diseases (Basel, Switzerland)","volume":"13 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385860/pdf/","citationCount":"0","resultStr":"{\"title\":\"Focused View CT Urography: Towards a Randomized Trial Investigating the Relevance of Incidental Findings in Patients with Hematuria.\",\"authors\":\"Tim E Sluijter, Christian Roest, Derya Yakar, Thomas C Kwee\",\"doi\":\"10.3390/diseases13080242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Computed tomography urography (CTU) is routinely used to evaluate the upper urinary tract in patients with hematuria. CTU may detect incidental findings outside the urinary tract, but it remains unclear if this adds value. This study aimed to develop a deep learning algorithm that automatically segments and selectively visualizes the urinary tract on CTU. <b>Methods</b>: The urinary tract (kidneys, ureters, and urinary bladder) was manually segmented on 2 mm dual-phase CTU slices of 111 subjects. With this dataset, a deep learning-based AI was trained to automatically segment and selectively visualize the urinary tract on CTU scans (including accompanying unenhanced CT scans), which we dub \\\"focused view CTU\\\". Focused view CTU was technically optimized and tested in 39 subjects with hematuria. <b>Results</b>: The technically optimized focused view CTU algorithm provided complete visualization of 97.4% of kidneys, 80.8% of ureters, and 94.9% of urinary bladders. All urinary tract organs were completely visualized in 66.6% of cases. In these cases (excluding 33.3% of cases with incomplete visualization), focused view CTU intrinsically achieved a sensitivity, specificity, positive predictive value, and negative predictive value of 100.0%, 92.3%, 92.9%, and 100.0% for lesions in the urinary tract compared to unmodified CT, although interrater agreement was moderate (κ = 0.528). All incidental findings were successfully hidden by focused view CTU. <b>Conclusions</b>: Focused view CTU provides adequate urinary tract segmentation in most cases, but further research is needed to optimize the technique (segmentation does not succeed in about one-third of cases). It offers selective urinary tract visualization, potentially aiding in assessing relevance and cost-effectiveness of detecting incidental findings in hematuria patients through a prospective randomized trial.</p>\",\"PeriodicalId\":72832,\"journal\":{\"name\":\"Diseases (Basel, Switzerland)\",\"volume\":\"13 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12385860/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diseases (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/diseases13080242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/diseases13080242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Focused View CT Urography: Towards a Randomized Trial Investigating the Relevance of Incidental Findings in Patients with Hematuria.
Background: Computed tomography urography (CTU) is routinely used to evaluate the upper urinary tract in patients with hematuria. CTU may detect incidental findings outside the urinary tract, but it remains unclear if this adds value. This study aimed to develop a deep learning algorithm that automatically segments and selectively visualizes the urinary tract on CTU. Methods: The urinary tract (kidneys, ureters, and urinary bladder) was manually segmented on 2 mm dual-phase CTU slices of 111 subjects. With this dataset, a deep learning-based AI was trained to automatically segment and selectively visualize the urinary tract on CTU scans (including accompanying unenhanced CT scans), which we dub "focused view CTU". Focused view CTU was technically optimized and tested in 39 subjects with hematuria. Results: The technically optimized focused view CTU algorithm provided complete visualization of 97.4% of kidneys, 80.8% of ureters, and 94.9% of urinary bladders. All urinary tract organs were completely visualized in 66.6% of cases. In these cases (excluding 33.3% of cases with incomplete visualization), focused view CTU intrinsically achieved a sensitivity, specificity, positive predictive value, and negative predictive value of 100.0%, 92.3%, 92.9%, and 100.0% for lesions in the urinary tract compared to unmodified CT, although interrater agreement was moderate (κ = 0.528). All incidental findings were successfully hidden by focused view CTU. Conclusions: Focused view CTU provides adequate urinary tract segmentation in most cases, but further research is needed to optimize the technique (segmentation does not succeed in about one-third of cases). It offers selective urinary tract visualization, potentially aiding in assessing relevance and cost-effectiveness of detecting incidental findings in hematuria patients through a prospective randomized trial.