机械炎症中的压电通道:神经免疫串扰的守门人。

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Carmelo Pirri
{"title":"机械炎症中的压电通道:神经免疫串扰的守门人。","authors":"Carmelo Pirri","doi":"10.3390/diseases13080263","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical forces shape immune responses in both health and disease. PIEZO1 and PIEZO2, two mechanosensitive ion channels, have emerged as critical transducers of these forces, influencing inflammation, pain, fibrosis, and neuroimmune regulation. This review aims to synthesize the current evidence on the role of PIEZO channels in mechano-inflammation, with a specific focus on their regulatory function in neuroimmune crosstalk. A comprehensive narrative synthesis was performed using the literature from PubMed, Scopus, and Web of Science up to June 2025. Experimental, translational, and mechanistic studies involving PIEZO channels in inflammatory, fibrotic, and neuroimmune processes were included. PIEZO1 is broadly expressed in immune cells, fibroblasts, and endothelial cells, where it regulates calcium-dependent activation of pro-inflammatory pathways, such as NF-kB and STAT1. PIEZO2, enriched in sensory neurons, contributes to mechanosensory amplification of inflammatory pain. Both channels are mechanistically involved in neuroinflammation, glial activation, blood-brain barrier dysfunction, connective tissue fibrosis, and visceral hypersensitivity. PIEZO channels act as integrators of biomechanical and immunological signaling. Their roles as context-dependent gatekeepers of neuroimmune crosstalk make them attractive targets for novel therapies.</p>","PeriodicalId":72832,"journal":{"name":"Diseases (Basel, Switzerland)","volume":"13 8","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386134/pdf/","citationCount":"0","resultStr":"{\"title\":\"PIEZO Channels in Mechano-Inflammation: Gatekeepers of Neuroimmune Crosstalk.\",\"authors\":\"Carmelo Pirri\",\"doi\":\"10.3390/diseases13080263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanical forces shape immune responses in both health and disease. PIEZO1 and PIEZO2, two mechanosensitive ion channels, have emerged as critical transducers of these forces, influencing inflammation, pain, fibrosis, and neuroimmune regulation. This review aims to synthesize the current evidence on the role of PIEZO channels in mechano-inflammation, with a specific focus on their regulatory function in neuroimmune crosstalk. A comprehensive narrative synthesis was performed using the literature from PubMed, Scopus, and Web of Science up to June 2025. Experimental, translational, and mechanistic studies involving PIEZO channels in inflammatory, fibrotic, and neuroimmune processes were included. PIEZO1 is broadly expressed in immune cells, fibroblasts, and endothelial cells, where it regulates calcium-dependent activation of pro-inflammatory pathways, such as NF-kB and STAT1. PIEZO2, enriched in sensory neurons, contributes to mechanosensory amplification of inflammatory pain. Both channels are mechanistically involved in neuroinflammation, glial activation, blood-brain barrier dysfunction, connective tissue fibrosis, and visceral hypersensitivity. PIEZO channels act as integrators of biomechanical and immunological signaling. Their roles as context-dependent gatekeepers of neuroimmune crosstalk make them attractive targets for novel therapies.</p>\",\"PeriodicalId\":72832,\"journal\":{\"name\":\"Diseases (Basel, Switzerland)\",\"volume\":\"13 8\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12386134/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diseases (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/diseases13080263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/diseases13080263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

机械力塑造健康和疾病的免疫反应。PIEZO1和PIEZO2,两个机械敏感离子通道,已经成为这些力的关键换能器,影响炎症,疼痛,纤维化和神经免疫调节。这篇综述旨在综合目前关于压电通道在机械炎症中的作用的证据,特别关注它们在神经免疫串扰中的调节功能。使用PubMed, Scopus和Web of Science截至2025年6月的文献进行全面的叙事综合。实验、翻译和机制研究涉及炎症、纤维化和神经免疫过程中的压电通道。PIEZO1在免疫细胞、成纤维细胞和内皮细胞中广泛表达,在这些细胞中,它调节促炎通路的钙依赖性激活,如NF-kB和STAT1。在感觉神经元中富集的PIEZO2有助于炎症性疼痛的机械感觉放大。这两个通道都与神经炎症、神经胶质激活、血脑屏障功能障碍、结缔组织纤维化和内脏过敏有关。压电通道作为生物力学和免疫信号的集成商。它们作为神经免疫串音的情境依赖看门人的角色,使它们成为新疗法的有吸引力的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PIEZO Channels in Mechano-Inflammation: Gatekeepers of Neuroimmune Crosstalk.

PIEZO Channels in Mechano-Inflammation: Gatekeepers of Neuroimmune Crosstalk.

Mechanical forces shape immune responses in both health and disease. PIEZO1 and PIEZO2, two mechanosensitive ion channels, have emerged as critical transducers of these forces, influencing inflammation, pain, fibrosis, and neuroimmune regulation. This review aims to synthesize the current evidence on the role of PIEZO channels in mechano-inflammation, with a specific focus on their regulatory function in neuroimmune crosstalk. A comprehensive narrative synthesis was performed using the literature from PubMed, Scopus, and Web of Science up to June 2025. Experimental, translational, and mechanistic studies involving PIEZO channels in inflammatory, fibrotic, and neuroimmune processes were included. PIEZO1 is broadly expressed in immune cells, fibroblasts, and endothelial cells, where it regulates calcium-dependent activation of pro-inflammatory pathways, such as NF-kB and STAT1. PIEZO2, enriched in sensory neurons, contributes to mechanosensory amplification of inflammatory pain. Both channels are mechanistically involved in neuroinflammation, glial activation, blood-brain barrier dysfunction, connective tissue fibrosis, and visceral hypersensitivity. PIEZO channels act as integrators of biomechanical and immunological signaling. Their roles as context-dependent gatekeepers of neuroimmune crosstalk make them attractive targets for novel therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信