估计儿童癌症幸存者的个人时间症状网络。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yiwang Zhou, Samira Deshpande, Madeline R Horan, Jaesung Choi, Daniel A Mulrooney, Kirsten K Ness, Melissa M Hudson, Deo Kumar Srivastava, I-Chan Huang
{"title":"估计儿童癌症幸存者的个人时间症状网络。","authors":"Yiwang Zhou, Samira Deshpande, Madeline R Horan, Jaesung Choi, Daniel A Mulrooney, Kirsten K Ness, Melissa M Hudson, Deo Kumar Srivastava, I-Chan Huang","doi":"10.1038/s43856-025-01105-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Childhood cancer survivors experience persistent and evolving symptom burden post-therapy. Network analysis can help uncover the complex symptom patterns. However, current network analyses often rely on cross-sectional data and focus on average symptom patterns among survivors, overlooking individual heterogeneities.</p><p><strong>Methods: </strong>We introduced an autoregressive logistic model with covariates to account for individual heterogeneities in network estimation and to construct personal temporal symptom networks. Simulation experiments were conducted to validate the robustness of this method in constructing personal temporal symptom networks. We also applied the autoregressive logistic model with covariates to longitudinal symptom data from a random sample of 2000 adult survivors of childhood cancer in the St. Jude Lifetime Cohort Study (SJLIFE).</p><p><strong>Results: </strong>Simulation studies demonstrate that the proposed method reliably recovers personal temporal symptom network structures under various conditions. In the real data application, older age, female sex, lower educational attainment, annual personal income <$20,000, and receipt of chemotherapy and/or radiation therapy are associated with stronger connections between symptoms at baseline and the first follow-up.</p><p><strong>Conclusions: </strong>We demonstrate that the logistic autoregressive model with covariates effectively estimates personal temporal symptom networks for childhood cancer survivors, enabling personalized symptom monitoring and informing tailored symptom management strategies.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"377"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394638/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating personal temporal symptom networks for childhood cancer survivors.\",\"authors\":\"Yiwang Zhou, Samira Deshpande, Madeline R Horan, Jaesung Choi, Daniel A Mulrooney, Kirsten K Ness, Melissa M Hudson, Deo Kumar Srivastava, I-Chan Huang\",\"doi\":\"10.1038/s43856-025-01105-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Childhood cancer survivors experience persistent and evolving symptom burden post-therapy. Network analysis can help uncover the complex symptom patterns. However, current network analyses often rely on cross-sectional data and focus on average symptom patterns among survivors, overlooking individual heterogeneities.</p><p><strong>Methods: </strong>We introduced an autoregressive logistic model with covariates to account for individual heterogeneities in network estimation and to construct personal temporal symptom networks. Simulation experiments were conducted to validate the robustness of this method in constructing personal temporal symptom networks. We also applied the autoregressive logistic model with covariates to longitudinal symptom data from a random sample of 2000 adult survivors of childhood cancer in the St. Jude Lifetime Cohort Study (SJLIFE).</p><p><strong>Results: </strong>Simulation studies demonstrate that the proposed method reliably recovers personal temporal symptom network structures under various conditions. In the real data application, older age, female sex, lower educational attainment, annual personal income <$20,000, and receipt of chemotherapy and/or radiation therapy are associated with stronger connections between symptoms at baseline and the first follow-up.</p><p><strong>Conclusions: </strong>We demonstrate that the logistic autoregressive model with covariates effectively estimates personal temporal symptom networks for childhood cancer survivors, enabling personalized symptom monitoring and informing tailored symptom management strategies.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"377\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12394638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-01105-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01105-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:儿童癌症幸存者在治疗后经历持续和不断发展的症状负担。网络分析可以帮助发现复杂的症状模式。然而,目前的网络分析往往依赖于横断面数据,关注幸存者的平均症状模式,忽视了个体异质性。方法:我们引入了一个自回归的逻辑模型与协变量来解释网络估计中的个体异质性,并构建个人时间症状网络。仿真实验验证了该方法在构建个人时间症状网络中的鲁棒性。我们还对St. Jude终身队列研究(SJLIFE)中2000名成年儿童癌症幸存者的纵向症状数据应用了协变量自回归logistic模型。结果:仿真研究表明,该方法能够可靠地恢复各种条件下的个人时间症状网络结构。在实际数据应用中,年龄较大、女性、受教育程度较低、年收入较高。结论:我们证明了带有协变量的logistic自回归模型有效地估计了儿童癌症幸存者的个人时间症状网络,实现了个性化的症状监测,并为量身定制的症状管理策略提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating personal temporal symptom networks for childhood cancer survivors.

Background: Childhood cancer survivors experience persistent and evolving symptom burden post-therapy. Network analysis can help uncover the complex symptom patterns. However, current network analyses often rely on cross-sectional data and focus on average symptom patterns among survivors, overlooking individual heterogeneities.

Methods: We introduced an autoregressive logistic model with covariates to account for individual heterogeneities in network estimation and to construct personal temporal symptom networks. Simulation experiments were conducted to validate the robustness of this method in constructing personal temporal symptom networks. We also applied the autoregressive logistic model with covariates to longitudinal symptom data from a random sample of 2000 adult survivors of childhood cancer in the St. Jude Lifetime Cohort Study (SJLIFE).

Results: Simulation studies demonstrate that the proposed method reliably recovers personal temporal symptom network structures under various conditions. In the real data application, older age, female sex, lower educational attainment, annual personal income <$20,000, and receipt of chemotherapy and/or radiation therapy are associated with stronger connections between symptoms at baseline and the first follow-up.

Conclusions: We demonstrate that the logistic autoregressive model with covariates effectively estimates personal temporal symptom networks for childhood cancer survivors, enabling personalized symptom monitoring and informing tailored symptom management strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信