{"title":"单细胞蛋白质组学使用质谱法。","authors":"Amanda Momenzadeh, Jesse G Meyer","doi":"10.1016/j.xgen.2025.100973","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past 2 to 3 years, mass-spectrometry-based single-cell proteomics (SCP) has experienced transformative improvements in microfluidic and robotic sample preparation, innovative MS1- and MS2-based multiplexing strategies, and specialized hardware (e.g., timsTOF Ultra 2, Astral), which have dramatically boosted sensitivity, throughput, and proteome coverage from picogram-level protein inputs. Concurrently, tailored computational workflows that encompass normalization, imputation, and no-code platforms have addressed pervasive missing data challenges and standardized analyses, collectively enabling high-throughput, reproducible profiling of cellular heterogeneity. This minireview summarizes the latest progress in SCP technology and software solutions, highlighting how the closer integration of analytical, computational, and experimental strategies will facilitate a deeper and broader coverage of single-cell proteomes.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100973"},"PeriodicalIF":11.1000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell proteomics using mass spectrometry.\",\"authors\":\"Amanda Momenzadeh, Jesse G Meyer\",\"doi\":\"10.1016/j.xgen.2025.100973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past 2 to 3 years, mass-spectrometry-based single-cell proteomics (SCP) has experienced transformative improvements in microfluidic and robotic sample preparation, innovative MS1- and MS2-based multiplexing strategies, and specialized hardware (e.g., timsTOF Ultra 2, Astral), which have dramatically boosted sensitivity, throughput, and proteome coverage from picogram-level protein inputs. Concurrently, tailored computational workflows that encompass normalization, imputation, and no-code platforms have addressed pervasive missing data challenges and standardized analyses, collectively enabling high-throughput, reproducible profiling of cellular heterogeneity. This minireview summarizes the latest progress in SCP technology and software solutions, highlighting how the closer integration of analytical, computational, and experimental strategies will facilitate a deeper and broader coverage of single-cell proteomes.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100973\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Over the past 2 to 3 years, mass-spectrometry-based single-cell proteomics (SCP) has experienced transformative improvements in microfluidic and robotic sample preparation, innovative MS1- and MS2-based multiplexing strategies, and specialized hardware (e.g., timsTOF Ultra 2, Astral), which have dramatically boosted sensitivity, throughput, and proteome coverage from picogram-level protein inputs. Concurrently, tailored computational workflows that encompass normalization, imputation, and no-code platforms have addressed pervasive missing data challenges and standardized analyses, collectively enabling high-throughput, reproducible profiling of cellular heterogeneity. This minireview summarizes the latest progress in SCP technology and software solutions, highlighting how the closer integration of analytical, computational, and experimental strategies will facilitate a deeper and broader coverage of single-cell proteomes.