利用人类基因组缺失的序列来诊断癌症。

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Ilias Georgakopoulos-Soares, Ofer Yizhar-Barnea, Ioannis Mouratidis, Candace S Y Chan, Michail Patsakis, Akshatha Nayak, Rachael Bradley, Mayank Mahajan, Jasmine Sims, Dianne Laboy Cintron, Ryder Easterlin, Julia S Kim, Emmalyn Chen, Geovanni Pineda, Guillermo E Parada, John S Witte, Christopher A Maher, Felix Feng, Ioannis Vathiotis, Nikolaos Syrigos, Emmanouil Panagiotou, Andriani Charpidou, Konstantinos Syrigos, Jocelyn Chapman, Mark Kvale, Martin Hemberg, Nadav Ahituv
{"title":"利用人类基因组缺失的序列来诊断癌症。","authors":"Ilias Georgakopoulos-Soares, Ofer Yizhar-Barnea, Ioannis Mouratidis, Candace S Y Chan, Michail Patsakis, Akshatha Nayak, Rachael Bradley, Mayank Mahajan, Jasmine Sims, Dianne Laboy Cintron, Ryder Easterlin, Julia S Kim, Emmalyn Chen, Geovanni Pineda, Guillermo E Parada, John S Witte, Christopher A Maher, Felix Feng, Ioannis Vathiotis, Nikolaos Syrigos, Emmanouil Panagiotou, Andriani Charpidou, Konstantinos Syrigos, Jocelyn Chapman, Mark Kvale, Martin Hemberg, Nadav Ahituv","doi":"10.1038/s43856-025-01067-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer diagnosis using cell-free DNA (cfDNA) has the potential to improve treatment and survival but has several technical limitations.</p><p><strong>Methods: </strong>In this study, we developed a prediction model based on neomers, DNA sequences 13-17 nucleotides in length that are predominantly absent from the genomes of healthy individuals and are created by tumor-associated mutations.</p><p><strong>Results: </strong>We show that neomer-based classifiers can accurately detect cancer, including early stages, and distinguish subtypes and features. Analysis of 2577 cancer genomes from 21 cancer types shows that neomers can distinguish tumor types with higher accuracy than state-of-the-art methods. Generation and analysis of 465 cfDNA whole-genome sequences demonstrates that neomers can precisely detect lung and ovarian cancer, including early stages, with an area under the curve ranging from 0.89 to 0.94. By testing various promoters or over 9000 candidate enhancer sequences with massively parallel reporter assays, we show that neomers can identify cancer-associated mutations that alter regulatory activity.</p><p><strong>Conclusions: </strong>Combined, our results identify a sensitive, specific, and simple cancer diagnostic tool that can also identify cancer-associated mutations in gene regulatory elements.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"363"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371106/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging sequences missing from the human genome to diagnose cancer.\",\"authors\":\"Ilias Georgakopoulos-Soares, Ofer Yizhar-Barnea, Ioannis Mouratidis, Candace S Y Chan, Michail Patsakis, Akshatha Nayak, Rachael Bradley, Mayank Mahajan, Jasmine Sims, Dianne Laboy Cintron, Ryder Easterlin, Julia S Kim, Emmalyn Chen, Geovanni Pineda, Guillermo E Parada, John S Witte, Christopher A Maher, Felix Feng, Ioannis Vathiotis, Nikolaos Syrigos, Emmanouil Panagiotou, Andriani Charpidou, Konstantinos Syrigos, Jocelyn Chapman, Mark Kvale, Martin Hemberg, Nadav Ahituv\",\"doi\":\"10.1038/s43856-025-01067-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cancer diagnosis using cell-free DNA (cfDNA) has the potential to improve treatment and survival but has several technical limitations.</p><p><strong>Methods: </strong>In this study, we developed a prediction model based on neomers, DNA sequences 13-17 nucleotides in length that are predominantly absent from the genomes of healthy individuals and are created by tumor-associated mutations.</p><p><strong>Results: </strong>We show that neomer-based classifiers can accurately detect cancer, including early stages, and distinguish subtypes and features. Analysis of 2577 cancer genomes from 21 cancer types shows that neomers can distinguish tumor types with higher accuracy than state-of-the-art methods. Generation and analysis of 465 cfDNA whole-genome sequences demonstrates that neomers can precisely detect lung and ovarian cancer, including early stages, with an area under the curve ranging from 0.89 to 0.94. By testing various promoters or over 9000 candidate enhancer sequences with massively parallel reporter assays, we show that neomers can identify cancer-associated mutations that alter regulatory activity.</p><p><strong>Conclusions: </strong>Combined, our results identify a sensitive, specific, and simple cancer diagnostic tool that can also identify cancer-associated mutations in gene regulatory elements.</p>\",\"PeriodicalId\":72646,\"journal\":{\"name\":\"Communications medicine\",\"volume\":\"5 1\",\"pages\":\"363\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371106/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43856-025-01067-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-01067-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:使用无细胞DNA (cfDNA)进行癌症诊断有可能改善治疗和生存率,但存在一些技术限制。方法:在这项研究中,我们建立了一个基于新异构体的预测模型,即健康个体基因组中主要缺失的长度为13-17个核苷酸的DNA序列,这些序列是由肿瘤相关突变产生的。结果:我们发现基于neomer的分类器可以准确地检测癌症,包括早期阶段,并区分亚型和特征。对来自21种癌症类型的2577个癌症基因组的分析表明,新分子可以比最先进的方法更准确地区分肿瘤类型。465个cfDNA全基因组序列的生成和分析表明,新聚体可以精确检测肺癌和卵巢癌,包括早期阶段,曲线下面积范围为0.89至0.94。通过对多种启动子或9000多种候选增强子序列进行大规模平行报告基因检测,我们发现新异构体可以识别改变调控活性的癌症相关突变。结论:综合起来,我们的研究结果确定了一种敏感、特异性和简单的癌症诊断工具,也可以识别基因调控元件中的癌症相关突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging sequences missing from the human genome to diagnose cancer.

Background: Cancer diagnosis using cell-free DNA (cfDNA) has the potential to improve treatment and survival but has several technical limitations.

Methods: In this study, we developed a prediction model based on neomers, DNA sequences 13-17 nucleotides in length that are predominantly absent from the genomes of healthy individuals and are created by tumor-associated mutations.

Results: We show that neomer-based classifiers can accurately detect cancer, including early stages, and distinguish subtypes and features. Analysis of 2577 cancer genomes from 21 cancer types shows that neomers can distinguish tumor types with higher accuracy than state-of-the-art methods. Generation and analysis of 465 cfDNA whole-genome sequences demonstrates that neomers can precisely detect lung and ovarian cancer, including early stages, with an area under the curve ranging from 0.89 to 0.94. By testing various promoters or over 9000 candidate enhancer sequences with massively parallel reporter assays, we show that neomers can identify cancer-associated mutations that alter regulatory activity.

Conclusions: Combined, our results identify a sensitive, specific, and simple cancer diagnostic tool that can also identify cancer-associated mutations in gene regulatory elements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信