伴蛋白介导的自噬功能障碍在吡喹莫德诱导的银屑病样皮炎。

Autophagy reports Pub Date : 2025-08-25 eCollection Date: 2025-01-01 DOI:10.1080/27694127.2025.2544061
Wei Zhao, Kainan Liao, Wei Song, Jing Wang, Chunlin Cai, Fusheng Zhou, Dandan Zang, Deping Xu, Haisheng Zhou
{"title":"伴蛋白介导的自噬功能障碍在吡喹莫德诱导的银屑病样皮炎。","authors":"Wei Zhao, Kainan Liao, Wei Song, Jing Wang, Chunlin Cai, Fusheng Zhou, Dandan Zang, Deping Xu, Haisheng Zhou","doi":"10.1080/27694127.2025.2544061","DOIUrl":null,"url":null,"abstract":"<p><p>Psoriasis is a chronic inflammatory skin disease characterized by abnormal differentiation and hyperproliferation of epidermal keratinocytes. Autophagy plays a critical role in regulating the functions of immune cells, endothelial cells, and especially keratinocytes, contributing to the pathogenesis of psoriasis. However, the role of chaperone-mediated autophagy (CMA) in psoriatic keratinocytes has not been fully explored. Our study, for the first time, revealed that defective CMA is present in imiquimod (IMQ)-induced psoriasiform lesions. Importantly, activation of CMA significantly attenuated IMQ-induced phenotypes both <i>in vitro</i> and <i>in vivo</i>, including reduced skin lesion severity, decreased keratinocyte proliferation and differentiation, and lower cytokine secretion. Mechanistically, toll-like receptor 7 (TLR7), containing a specific KFERQ-like motif, is a substrate for CMA-mediated degradation. This process modulates IMQ-TLR7 signal activation in keratinocytes. CMA deficiency in psoriasis leads to increased TLR7 levels, which, in turn, enhances TLR7-NF-κB signaling pathway activation, ultimately contributing to dysregulated keratinocyte proliferation, differentiation, and cytokine secretion. This study provides novel evidence that defective CMA is present in IMQ-induced psoriasiform lesions and that CMA activation can attenuate IMQ-induced phenotypes by modulating TLR7 signaling in keratinocytes. These findings highlight the potential of CMA as a therapeutic target for psoriasis.</p>","PeriodicalId":72341,"journal":{"name":"Autophagy reports","volume":"4 1","pages":"2544061"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380211/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chaperone-mediated autophagy dysfunction in imiquimod-induced psoriasiform dermatitis.\",\"authors\":\"Wei Zhao, Kainan Liao, Wei Song, Jing Wang, Chunlin Cai, Fusheng Zhou, Dandan Zang, Deping Xu, Haisheng Zhou\",\"doi\":\"10.1080/27694127.2025.2544061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Psoriasis is a chronic inflammatory skin disease characterized by abnormal differentiation and hyperproliferation of epidermal keratinocytes. Autophagy plays a critical role in regulating the functions of immune cells, endothelial cells, and especially keratinocytes, contributing to the pathogenesis of psoriasis. However, the role of chaperone-mediated autophagy (CMA) in psoriatic keratinocytes has not been fully explored. Our study, for the first time, revealed that defective CMA is present in imiquimod (IMQ)-induced psoriasiform lesions. Importantly, activation of CMA significantly attenuated IMQ-induced phenotypes both <i>in vitro</i> and <i>in vivo</i>, including reduced skin lesion severity, decreased keratinocyte proliferation and differentiation, and lower cytokine secretion. Mechanistically, toll-like receptor 7 (TLR7), containing a specific KFERQ-like motif, is a substrate for CMA-mediated degradation. This process modulates IMQ-TLR7 signal activation in keratinocytes. CMA deficiency in psoriasis leads to increased TLR7 levels, which, in turn, enhances TLR7-NF-κB signaling pathway activation, ultimately contributing to dysregulated keratinocyte proliferation, differentiation, and cytokine secretion. This study provides novel evidence that defective CMA is present in IMQ-induced psoriasiform lesions and that CMA activation can attenuate IMQ-induced phenotypes by modulating TLR7 signaling in keratinocytes. These findings highlight the potential of CMA as a therapeutic target for psoriasis.</p>\",\"PeriodicalId\":72341,\"journal\":{\"name\":\"Autophagy reports\",\"volume\":\"4 1\",\"pages\":\"2544061\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380211/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/27694127.2025.2544061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27694127.2025.2544061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

银屑病是一种慢性炎症性皮肤病,其特征是表皮角质形成细胞的异常分化和过度增殖。自噬在调节免疫细胞、内皮细胞,尤其是角化细胞的功能中起关键作用,参与银屑病的发病机制。然而,伴侣介导的自噬(CMA)在银屑病角化细胞中的作用尚未得到充分探讨。我们的研究首次揭示了在咪喹莫特(IMQ)诱导的银屑病样病变中存在CMA缺陷。重要的是,CMA的激活显著减弱了imq诱导的体内和体外表型,包括皮肤损伤严重程度降低、角质细胞增殖和分化减少以及细胞因子分泌减少。从机制上讲,toll样受体7 (TLR7)含有特定的kferq样基元,是cma介导降解的底物。这一过程调节了角化细胞中IMQ-TLR7信号的激活。银屑病CMA缺乏导致TLR7水平升高,进而增强TLR7- nf -κB信号通路的激活,最终导致角化细胞增殖、分化和细胞因子分泌失调。这项研究提供了新的证据,证明在imq诱导的银屑病样病变中存在CMA缺陷,并且CMA激活可以通过调节角化细胞中的TLR7信号通路来减弱imq诱导的表型。这些发现突出了CMA作为银屑病治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaperone-mediated autophagy dysfunction in imiquimod-induced psoriasiform dermatitis.

Psoriasis is a chronic inflammatory skin disease characterized by abnormal differentiation and hyperproliferation of epidermal keratinocytes. Autophagy plays a critical role in regulating the functions of immune cells, endothelial cells, and especially keratinocytes, contributing to the pathogenesis of psoriasis. However, the role of chaperone-mediated autophagy (CMA) in psoriatic keratinocytes has not been fully explored. Our study, for the first time, revealed that defective CMA is present in imiquimod (IMQ)-induced psoriasiform lesions. Importantly, activation of CMA significantly attenuated IMQ-induced phenotypes both in vitro and in vivo, including reduced skin lesion severity, decreased keratinocyte proliferation and differentiation, and lower cytokine secretion. Mechanistically, toll-like receptor 7 (TLR7), containing a specific KFERQ-like motif, is a substrate for CMA-mediated degradation. This process modulates IMQ-TLR7 signal activation in keratinocytes. CMA deficiency in psoriasis leads to increased TLR7 levels, which, in turn, enhances TLR7-NF-κB signaling pathway activation, ultimately contributing to dysregulated keratinocyte proliferation, differentiation, and cytokine secretion. This study provides novel evidence that defective CMA is present in IMQ-induced psoriasiform lesions and that CMA activation can attenuate IMQ-induced phenotypes by modulating TLR7 signaling in keratinocytes. These findings highlight the potential of CMA as a therapeutic target for psoriasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信