{"title":"自噬在实体器官移植后排斥反应中的作用:文献系统综述。","authors":"Shu-Min Jiang, Xue-Jiao Li, Zi-Lin Wang, Zhi-Wei Chen, Zhi-Long Liu, Qiang Li, Xiao-Long Chen","doi":"10.5500/wjt.v15.i3.103163","DOIUrl":null,"url":null,"abstract":"<p><p>Organ transplantation has long been recognized as an effective treatment for end-stage organ failure, metabolic diseases, and malignant tumors. However, graft rejection caused by major histocompatibility complex mismatch remains a significant challenge. While modern immunosuppressants have made significant strides in reducing the incidence and risk of rejection, they have not been able to eliminate it completely. The intricate mechanisms underlying transplant rejection have been the subject of intense investigation by transplant immunologists. Among these factors, autophagy has emerged as a key player. Autophagy is an evolutionarily conserved mechanism in eukaryotic cells that mediates autophagocytosis and cellular protection. This process is regulated by autophagy-related genes and their encoded protein families, which maintain the material and energetic balance within cells. Additionally, autophagy has been reported to play crucial roles in the development, maturation, differentiation, and responses of immune cells. In the complex immune environment following transplantation, the role and mechanisms of autophagy are gradually being revealed. In this review, we aim to explore the current understanding of the role of autophagy in solid organ rejection after transplantation. Furthermore, we delve into the therapeutic advancements achieved by targeting autophagy involved in the rejection process.</p>","PeriodicalId":65557,"journal":{"name":"世界移植杂志","volume":"15 3","pages":"103163"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038577/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of autophagy in rejection after solid organ transplantation: A systematic review of the literature.\",\"authors\":\"Shu-Min Jiang, Xue-Jiao Li, Zi-Lin Wang, Zhi-Wei Chen, Zhi-Long Liu, Qiang Li, Xiao-Long Chen\",\"doi\":\"10.5500/wjt.v15.i3.103163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organ transplantation has long been recognized as an effective treatment for end-stage organ failure, metabolic diseases, and malignant tumors. However, graft rejection caused by major histocompatibility complex mismatch remains a significant challenge. While modern immunosuppressants have made significant strides in reducing the incidence and risk of rejection, they have not been able to eliminate it completely. The intricate mechanisms underlying transplant rejection have been the subject of intense investigation by transplant immunologists. Among these factors, autophagy has emerged as a key player. Autophagy is an evolutionarily conserved mechanism in eukaryotic cells that mediates autophagocytosis and cellular protection. This process is regulated by autophagy-related genes and their encoded protein families, which maintain the material and energetic balance within cells. Additionally, autophagy has been reported to play crucial roles in the development, maturation, differentiation, and responses of immune cells. In the complex immune environment following transplantation, the role and mechanisms of autophagy are gradually being revealed. In this review, we aim to explore the current understanding of the role of autophagy in solid organ rejection after transplantation. Furthermore, we delve into the therapeutic advancements achieved by targeting autophagy involved in the rejection process.</p>\",\"PeriodicalId\":65557,\"journal\":{\"name\":\"世界移植杂志\",\"volume\":\"15 3\",\"pages\":\"103163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"世界移植杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5500/wjt.v15.i3.103163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"世界移植杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5500/wjt.v15.i3.103163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of autophagy in rejection after solid organ transplantation: A systematic review of the literature.
Organ transplantation has long been recognized as an effective treatment for end-stage organ failure, metabolic diseases, and malignant tumors. However, graft rejection caused by major histocompatibility complex mismatch remains a significant challenge. While modern immunosuppressants have made significant strides in reducing the incidence and risk of rejection, they have not been able to eliminate it completely. The intricate mechanisms underlying transplant rejection have been the subject of intense investigation by transplant immunologists. Among these factors, autophagy has emerged as a key player. Autophagy is an evolutionarily conserved mechanism in eukaryotic cells that mediates autophagocytosis and cellular protection. This process is regulated by autophagy-related genes and their encoded protein families, which maintain the material and energetic balance within cells. Additionally, autophagy has been reported to play crucial roles in the development, maturation, differentiation, and responses of immune cells. In the complex immune environment following transplantation, the role and mechanisms of autophagy are gradually being revealed. In this review, we aim to explore the current understanding of the role of autophagy in solid organ rejection after transplantation. Furthermore, we delve into the therapeutic advancements achieved by targeting autophagy involved in the rejection process.