在当前和升高的海水温度下,黄颡鱼(Zebrasoma flavescens)的有氧范围和温度偏好。

IF 1.6 3区 生物学 Q4 PHYSIOLOGY
Elsa S van Hall, Keith E Korsmeyer
{"title":"在当前和升高的海水温度下,黄颡鱼(Zebrasoma flavescens)的有氧范围和温度偏好。","authors":"Elsa S van Hall, Keith E Korsmeyer","doi":"10.1007/s00360-025-01627-y","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change is predicted to continue elevating regional sea surface temperatures (SST) and increase the frequency and severity of localized heating events, phenomena which may threaten the biodiversity, integrity, and function of tropical coral reef ecosystems. The primary objective of this study was to determine physiological and behavioral responses to elevated SST in a Hawaiian surgeonfish, the yellow tang, Zebrasoma flavescens. We assessed standard metabolic rate (SMR), maximum metabolic rate (MMR), aerobic scope (AS), and swimming performance, as well as temperature preference (T<sub>pref</sub>) in this ecologically and economically important coral reef fish. The Z. flavescens were acclimated to either the current maximum monthly summer SST around O'ahu, 27 °C, or an elevated SST, 31 °C. Acclimation temperature had no significant effect on SMR, MMR, AS, or swimming performance. Temperature preference was tested over a 24-hour period in an annular preference chamber with a gradient ranging from 24 to 34 °C. Our study found that Z. flavescens in both acclimation temperatures had a similar T<sub>pref</sub> (median) of 27 °C with first and third quartiles of 25.7 to 29 °C. Analysis of relative use of available temperatures (compositional analysis) indicated a preference for the lowest available temperatures of 24 to 26 °C in both acclimation groups. These findings indicate that Z. flavescens can completely compensate AS and swimming ability to the elevated SST conditions, although T<sub>pref</sub> remains near or below the current summer SST, suggesting other factors explain behavioral temperature preference.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerobic scope and temperature preference in yellow tang (Zebrasoma flavescens) at current and elevated sea temperatures.\",\"authors\":\"Elsa S van Hall, Keith E Korsmeyer\",\"doi\":\"10.1007/s00360-025-01627-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change is predicted to continue elevating regional sea surface temperatures (SST) and increase the frequency and severity of localized heating events, phenomena which may threaten the biodiversity, integrity, and function of tropical coral reef ecosystems. The primary objective of this study was to determine physiological and behavioral responses to elevated SST in a Hawaiian surgeonfish, the yellow tang, Zebrasoma flavescens. We assessed standard metabolic rate (SMR), maximum metabolic rate (MMR), aerobic scope (AS), and swimming performance, as well as temperature preference (T<sub>pref</sub>) in this ecologically and economically important coral reef fish. The Z. flavescens were acclimated to either the current maximum monthly summer SST around O'ahu, 27 °C, or an elevated SST, 31 °C. Acclimation temperature had no significant effect on SMR, MMR, AS, or swimming performance. Temperature preference was tested over a 24-hour period in an annular preference chamber with a gradient ranging from 24 to 34 °C. Our study found that Z. flavescens in both acclimation temperatures had a similar T<sub>pref</sub> (median) of 27 °C with first and third quartiles of 25.7 to 29 °C. Analysis of relative use of available temperatures (compositional analysis) indicated a preference for the lowest available temperatures of 24 to 26 °C in both acclimation groups. These findings indicate that Z. flavescens can completely compensate AS and swimming ability to the elevated SST conditions, although T<sub>pref</sub> remains near or below the current summer SST, suggesting other factors explain behavioral temperature preference.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-025-01627-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-025-01627-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

预测气候变化将持续提高区域海表温度,增加局部升温事件的频率和严重程度,这可能威胁到热带珊瑚礁生态系统的生物多样性、完整性和功能。本研究的主要目的是确定夏威夷黄颡鱼(Zebrasoma flavescens)对SST升高的生理和行为反应。我们评估了这种生态和经济上重要的珊瑚礁鱼类的标准代谢率(SMR)、最大代谢率(MMR)、有氧范围(AS)、游泳性能以及温度偏好(Tpref)。黄茎草要么适应当前夏季最大海温27°C,要么适应海温升高31°C。驯化温度对SMR、MMR、AS和游泳性能无显著影响。在24- 34°C梯度的环形偏好室中测试了24小时的温度偏好。本研究发现,两种驯化温度下黄茎的Tpref(中位数)相似,均为27°C,第一和第三四分位数为25.7 ~ 29°C。对有效温度的相对利用分析(成分分析)表明,两个驯化组都偏好24 ~ 26℃的最低有效温度。这些结果表明,尽管温度偏好保持在当前夏季海温附近或低于当前海温,黄貂鱼可以完全补偿温度偏好和游泳能力,表明其他因素可以解释行为温度偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerobic scope and temperature preference in yellow tang (Zebrasoma flavescens) at current and elevated sea temperatures.

Climate change is predicted to continue elevating regional sea surface temperatures (SST) and increase the frequency and severity of localized heating events, phenomena which may threaten the biodiversity, integrity, and function of tropical coral reef ecosystems. The primary objective of this study was to determine physiological and behavioral responses to elevated SST in a Hawaiian surgeonfish, the yellow tang, Zebrasoma flavescens. We assessed standard metabolic rate (SMR), maximum metabolic rate (MMR), aerobic scope (AS), and swimming performance, as well as temperature preference (Tpref) in this ecologically and economically important coral reef fish. The Z. flavescens were acclimated to either the current maximum monthly summer SST around O'ahu, 27 °C, or an elevated SST, 31 °C. Acclimation temperature had no significant effect on SMR, MMR, AS, or swimming performance. Temperature preference was tested over a 24-hour period in an annular preference chamber with a gradient ranging from 24 to 34 °C. Our study found that Z. flavescens in both acclimation temperatures had a similar Tpref (median) of 27 °C with first and third quartiles of 25.7 to 29 °C. Analysis of relative use of available temperatures (compositional analysis) indicated a preference for the lowest available temperatures of 24 to 26 °C in both acclimation groups. These findings indicate that Z. flavescens can completely compensate AS and swimming ability to the elevated SST conditions, although Tpref remains near or below the current summer SST, suggesting other factors explain behavioral temperature preference.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信