3D打印火星风化模拟物和蓝藻生物量复合材料,实现火星可持续材料生产。

IF 4.1 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES
Sophia Mannes Guesser De Oliveira, Kurosch Rezwan, Cyprien Verseux, Michael Maas
{"title":"3D打印火星风化模拟物和蓝藻生物量复合材料,实现火星可持续材料生产。","authors":"Sophia Mannes Guesser De Oliveira, Kurosch Rezwan, Cyprien Verseux, Michael Maas","doi":"10.1038/s41526-025-00521-9","DOIUrl":null,"url":null,"abstract":"<p><p>The long-term goal of establishing a sustained human presence on Mars requires the capacity to produce essential consumables on-site. To this end, we develop strategies for processing inorganic oxidic powders and biomass into highly particle-filled composites using direct ink writing (DIW) 3D printing. Our approach relies on a simulant of a Martian regolith unit rich in hydrated clay minerals and food-grade spirulina, used as proxies for local regolith and cyanobacterial biomass, respectively. The composites are further reinforced through crosslinking with the plant-based molecule genipin. Detailed rheological analysis was performed for the 3D printing feedstocks, while the printed composites were characterized using thermal gravimetric analysis (TGA), surface area porosity analysis (BET), microscopy and mechanical tests. Dissolution tests demonstrated that genipin effectively crosslinks the cyanobacterial biomass. The outcome is a highly porous, lightweight material with adaptable, complex morphology, which has significant potential for use in the resource-constrained environments of long-duration Mars missions.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"11 1","pages":"60"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397209/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D printing of composites of Martian regolith simulants and cyanobacterial biomass towards sustainable material production on Mars.\",\"authors\":\"Sophia Mannes Guesser De Oliveira, Kurosch Rezwan, Cyprien Verseux, Michael Maas\",\"doi\":\"10.1038/s41526-025-00521-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The long-term goal of establishing a sustained human presence on Mars requires the capacity to produce essential consumables on-site. To this end, we develop strategies for processing inorganic oxidic powders and biomass into highly particle-filled composites using direct ink writing (DIW) 3D printing. Our approach relies on a simulant of a Martian regolith unit rich in hydrated clay minerals and food-grade spirulina, used as proxies for local regolith and cyanobacterial biomass, respectively. The composites are further reinforced through crosslinking with the plant-based molecule genipin. Detailed rheological analysis was performed for the 3D printing feedstocks, while the printed composites were characterized using thermal gravimetric analysis (TGA), surface area porosity analysis (BET), microscopy and mechanical tests. Dissolution tests demonstrated that genipin effectively crosslinks the cyanobacterial biomass. The outcome is a highly porous, lightweight material with adaptable, complex morphology, which has significant potential for use in the resource-constrained environments of long-duration Mars missions.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"11 1\",\"pages\":\"60\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12397209/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-025-00521-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-025-00521-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在火星上建立持久的人类存在的长期目标需要有能力在火星上生产基本的消耗品。为此,我们开发了使用直接墨水书写(DIW) 3D打印将无机氧化粉末和生物质加工成高颗粒填充复合材料的策略。我们的方法依赖于富含水合粘土矿物和食品级螺旋藻的火星风化层单元的模拟物,分别用作当地风化层和蓝藻生物量的代理。复合材料通过与植物基分子genipin交联进一步增强。对3D打印原料进行了详细的流变分析,同时使用热重分析(TGA)、表面积孔隙率分析(BET)、显微镜和力学测试对打印的复合材料进行了表征。溶解试验表明,genipin有效交联蓝藻生物量。其结果是一种具有适应性、复杂形态的高多孔、轻质材料,在长期火星任务的资源受限环境中具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D printing of composites of Martian regolith simulants and cyanobacterial biomass towards sustainable material production on Mars.

3D printing of composites of Martian regolith simulants and cyanobacterial biomass towards sustainable material production on Mars.

3D printing of composites of Martian regolith simulants and cyanobacterial biomass towards sustainable material production on Mars.

3D printing of composites of Martian regolith simulants and cyanobacterial biomass towards sustainable material production on Mars.

The long-term goal of establishing a sustained human presence on Mars requires the capacity to produce essential consumables on-site. To this end, we develop strategies for processing inorganic oxidic powders and biomass into highly particle-filled composites using direct ink writing (DIW) 3D printing. Our approach relies on a simulant of a Martian regolith unit rich in hydrated clay minerals and food-grade spirulina, used as proxies for local regolith and cyanobacterial biomass, respectively. The composites are further reinforced through crosslinking with the plant-based molecule genipin. Detailed rheological analysis was performed for the 3D printing feedstocks, while the printed composites were characterized using thermal gravimetric analysis (TGA), surface area porosity analysis (BET), microscopy and mechanical tests. Dissolution tests demonstrated that genipin effectively crosslinks the cyanobacterial biomass. The outcome is a highly porous, lightweight material with adaptable, complex morphology, which has significant potential for use in the resource-constrained environments of long-duration Mars missions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信