Menna Allah Mahmoud, Sijun Wu, Ruihua Su, Yanhua Wen, Shuya Liu, Yubao Guan
{"title":"分类器与密度网模型相结合用于肺癌ct图像分类的比较分析。","authors":"Menna Allah Mahmoud, Sijun Wu, Ruihua Su, Yanhua Wen, Shuya Liu, Yubao Guan","doi":"10.2174/0115734056399377250818100506","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Lung cancer remains a leading cause of cancer-related mortality worldwide. While deep learning approaches show promise in medical imaging, comprehensive comparisons of classifier combinations with DenseNet architectures for lung cancer classification are limited. The study investigates the performance of different classifier combinations, Support Vector Machine (SVM), Artificial Neural Network (ANN), and Multi-Layer Perceptron (MLP), with DenseNet architectures for lung cancer classification using chest CT scan images.</p><p><strong>Methods: </strong>A comparative analysis was conducted on 1,000 chest CT scan images comprising Adenocarcinoma, Large Cell Carcinoma, Squamous Cell Carcinoma, and normal tissue samples. Three DenseNet variants (DenseNet-121, DenseNet-169, DenseNet-201) were combined with three classifiers: SVM, ANN, and MLP. Performance was evaluated using accuracy, Area Under the Curve (AUC), precision, recall, specificity, and F1- score with an 80-20 train-test split.</p><p><strong>Results: </strong>The optimal model achieved 92% training accuracy and 83% test accuracy. Performance across models ranged from 81% to 92% for training accuracy and 73% to 83% for test accuracy. The most balanced combination demonstrated robust results (training: 85% accuracy, 0.99 AUC; test: 79% accuracy, 0.95 AUC) with minimal overfitting.</p><p><strong>Discussion: </strong>Deep learning approaches effectively categorize chest CT scans for lung cancer detection. The MLP-DenseNet-169 combination's 83% test accuracy represents a promising benchmark. Limitations include retrospective design and a limited sample size from a single source.</p><p><strong>Conclusion: </strong>This evaluation demonstrates the effectiveness of combining DenseNet architectures with different classifiers for lung cancer CT classification. The MLP-DenseNet-169 achieved optimal performance, while SVM-DenseNet-169 showed superior stability, providing valuable benchmarks for automated lung cancer detection systems.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifiers Combined with DenseNet Models for Lung Cancer Computed Tomography Image Classification: A Comparative Analysis.\",\"authors\":\"Menna Allah Mahmoud, Sijun Wu, Ruihua Su, Yanhua Wen, Shuya Liu, Yubao Guan\",\"doi\":\"10.2174/0115734056399377250818100506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Lung cancer remains a leading cause of cancer-related mortality worldwide. While deep learning approaches show promise in medical imaging, comprehensive comparisons of classifier combinations with DenseNet architectures for lung cancer classification are limited. The study investigates the performance of different classifier combinations, Support Vector Machine (SVM), Artificial Neural Network (ANN), and Multi-Layer Perceptron (MLP), with DenseNet architectures for lung cancer classification using chest CT scan images.</p><p><strong>Methods: </strong>A comparative analysis was conducted on 1,000 chest CT scan images comprising Adenocarcinoma, Large Cell Carcinoma, Squamous Cell Carcinoma, and normal tissue samples. Three DenseNet variants (DenseNet-121, DenseNet-169, DenseNet-201) were combined with three classifiers: SVM, ANN, and MLP. Performance was evaluated using accuracy, Area Under the Curve (AUC), precision, recall, specificity, and F1- score with an 80-20 train-test split.</p><p><strong>Results: </strong>The optimal model achieved 92% training accuracy and 83% test accuracy. Performance across models ranged from 81% to 92% for training accuracy and 73% to 83% for test accuracy. The most balanced combination demonstrated robust results (training: 85% accuracy, 0.99 AUC; test: 79% accuracy, 0.95 AUC) with minimal overfitting.</p><p><strong>Discussion: </strong>Deep learning approaches effectively categorize chest CT scans for lung cancer detection. The MLP-DenseNet-169 combination's 83% test accuracy represents a promising benchmark. Limitations include retrospective design and a limited sample size from a single source.</p><p><strong>Conclusion: </strong>This evaluation demonstrates the effectiveness of combining DenseNet architectures with different classifiers for lung cancer CT classification. The MLP-DenseNet-169 achieved optimal performance, while SVM-DenseNet-169 showed superior stability, providing valuable benchmarks for automated lung cancer detection systems.</p>\",\"PeriodicalId\":54215,\"journal\":{\"name\":\"Current Medical Imaging Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Medical Imaging Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734056399377250818100506\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056399377250818100506","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Classifiers Combined with DenseNet Models for Lung Cancer Computed Tomography Image Classification: A Comparative Analysis.
Introduction: Lung cancer remains a leading cause of cancer-related mortality worldwide. While deep learning approaches show promise in medical imaging, comprehensive comparisons of classifier combinations with DenseNet architectures for lung cancer classification are limited. The study investigates the performance of different classifier combinations, Support Vector Machine (SVM), Artificial Neural Network (ANN), and Multi-Layer Perceptron (MLP), with DenseNet architectures for lung cancer classification using chest CT scan images.
Methods: A comparative analysis was conducted on 1,000 chest CT scan images comprising Adenocarcinoma, Large Cell Carcinoma, Squamous Cell Carcinoma, and normal tissue samples. Three DenseNet variants (DenseNet-121, DenseNet-169, DenseNet-201) were combined with three classifiers: SVM, ANN, and MLP. Performance was evaluated using accuracy, Area Under the Curve (AUC), precision, recall, specificity, and F1- score with an 80-20 train-test split.
Results: The optimal model achieved 92% training accuracy and 83% test accuracy. Performance across models ranged from 81% to 92% for training accuracy and 73% to 83% for test accuracy. The most balanced combination demonstrated robust results (training: 85% accuracy, 0.99 AUC; test: 79% accuracy, 0.95 AUC) with minimal overfitting.
Discussion: Deep learning approaches effectively categorize chest CT scans for lung cancer detection. The MLP-DenseNet-169 combination's 83% test accuracy represents a promising benchmark. Limitations include retrospective design and a limited sample size from a single source.
Conclusion: This evaluation demonstrates the effectiveness of combining DenseNet architectures with different classifiers for lung cancer CT classification. The MLP-DenseNet-169 achieved optimal performance, while SVM-DenseNet-169 showed superior stability, providing valuable benchmarks for automated lung cancer detection systems.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.