{"title":"基于超网络的突发事件舆情逆转识别研究。","authors":"Xuna Wang","doi":"10.1177/2167647X251366060","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of social media and online platforms, the speed and influence of emergency dissemination in cyberspace have significantly increased. The swift changes in public opinion, especially the phenomenon of opinion reversals, exert profound impacts on social stability and government credibility. The hypernetwork structure, characterized by its multilayered and multidimensional complexity, offers a new theoretical framework for analyzing multiagents and their interactions in the evolution of public opinion. Based on hypernetwork theory, this study constructs a four-layer subnet model encompassing user interaction network, event evolution network, semantic association network, and emotional conduction network. By extracting network structural features and conducting cross-layer linkage analysis, an identification system for public opinion reversals in emergencies is established. Taking the donation incident involving Hongxing Erke during the Henan rainstorm in 2021 as a case study, an empirical analysis of the public opinion reversal process is conducted. The research results indicate that the proposed hypernetwork model can effectively identify key nodes in public opinion reversals. The multi-indicator collaborative identification system for public opinion reversals aids in rapidly and effectively detecting signals of such reversals. This study not only provides new methodological support for the dynamic identification of public opinion reversals but also offers theoretical references and practical guidance for public opinion monitoring and emergency response decision-making in emergencies.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Public Opinion Reversal Recognition of Emergency Based on Hypernetwork.\",\"authors\":\"Xuna Wang\",\"doi\":\"10.1177/2167647X251366060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of social media and online platforms, the speed and influence of emergency dissemination in cyberspace have significantly increased. The swift changes in public opinion, especially the phenomenon of opinion reversals, exert profound impacts on social stability and government credibility. The hypernetwork structure, characterized by its multilayered and multidimensional complexity, offers a new theoretical framework for analyzing multiagents and their interactions in the evolution of public opinion. Based on hypernetwork theory, this study constructs a four-layer subnet model encompassing user interaction network, event evolution network, semantic association network, and emotional conduction network. By extracting network structural features and conducting cross-layer linkage analysis, an identification system for public opinion reversals in emergencies is established. Taking the donation incident involving Hongxing Erke during the Henan rainstorm in 2021 as a case study, an empirical analysis of the public opinion reversal process is conducted. The research results indicate that the proposed hypernetwork model can effectively identify key nodes in public opinion reversals. The multi-indicator collaborative identification system for public opinion reversals aids in rapidly and effectively detecting signals of such reversals. This study not only provides new methodological support for the dynamic identification of public opinion reversals but also offers theoretical references and practical guidance for public opinion monitoring and emergency response decision-making in emergencies.</p>\",\"PeriodicalId\":51314,\"journal\":{\"name\":\"Big Data\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/2167647X251366060\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/2167647X251366060","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Study of Public Opinion Reversal Recognition of Emergency Based on Hypernetwork.
With the rapid development of social media and online platforms, the speed and influence of emergency dissemination in cyberspace have significantly increased. The swift changes in public opinion, especially the phenomenon of opinion reversals, exert profound impacts on social stability and government credibility. The hypernetwork structure, characterized by its multilayered and multidimensional complexity, offers a new theoretical framework for analyzing multiagents and their interactions in the evolution of public opinion. Based on hypernetwork theory, this study constructs a four-layer subnet model encompassing user interaction network, event evolution network, semantic association network, and emotional conduction network. By extracting network structural features and conducting cross-layer linkage analysis, an identification system for public opinion reversals in emergencies is established. Taking the donation incident involving Hongxing Erke during the Henan rainstorm in 2021 as a case study, an empirical analysis of the public opinion reversal process is conducted. The research results indicate that the proposed hypernetwork model can effectively identify key nodes in public opinion reversals. The multi-indicator collaborative identification system for public opinion reversals aids in rapidly and effectively detecting signals of such reversals. This study not only provides new methodological support for the dynamic identification of public opinion reversals but also offers theoretical references and practical guidance for public opinion monitoring and emergency response decision-making in emergencies.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.