Ming Chen, Wenhui Zhu, Yao Chen, Jingying Shang, Wenfan Wang, Xiaoming Yan, Peng Liu, Yabin Zhou
{"title":"芦荟大黄素通过抑制pi3k介导的信号通路改善慢性肾脏疾病纤维化。","authors":"Ming Chen, Wenhui Zhu, Yao Chen, Jingying Shang, Wenfan Wang, Xiaoming Yan, Peng Liu, Yabin Zhou","doi":"10.4081/ejh.2025.4228","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease (CKD) impacts a vast number of individuals worldwide, culminating in renal fibrosis. Renal fibrosis serves as the main reason for end-stage renal failure. However, the current targeted treatment methods for renal fibrosis remain scarce. Aloe-emodin (AE) is a naturally occurring compound discovered in rhubarb and aloe. In this research, we investigated the underlying mechanisms of AE in adenine-induced mouse renal fibrosis models and TGFβ-1 stimulated renal tubular epithelial cells (HK-2). It was discovered that AE not only decelerated the decline of renal function in adenine-treated mice but also suppressed the expression of Collagen I and Fibronectin. Furthermore, network pharmacology analysis suggested that AE's treatment of renal fibrosis might function via the PI3K/Akt/GSK3β signaling pathway. In vivo and in vitro Western blot and immunofluorescence findings demonstrate that AE significantly resists the advancement of renal fibrosis by inhibiting α-smooth muscle actin (α-SMA) and vimentin. Simultaneously, findings from 740Y-P (a PI3K agonist) and siRNA (PI3K) indicate that AE inhibits the expression of the PI3K/Akt/GSK3β cascade by lowering PI3K's phosphorylation level. From a mechanistic perspective, through molecular docking and plasmid transfection, the specific base sequence of PI3K in HK-2 cells was altered for experimental validation. The outcomes illustrate that AE can directly bind with PI3K, inhibiting its activation, impeding the PI3K/Akt/GSK3β signal transmission, thereby ultimately suppressing renal fibrosis progression. In conclusion, PI3K/Akt/GSK3β is a potential therapeutic target for CKD-related renal fibrosis, making AE a promising new treatment alternative for this condition.</p>","PeriodicalId":50487,"journal":{"name":"European Journal of Histochemistry","volume":"69 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406115/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aloe-emodin ameliorates chronic kidney disease fibrosis by inhibiting PI3K-mediated signaling pathway.\",\"authors\":\"Ming Chen, Wenhui Zhu, Yao Chen, Jingying Shang, Wenfan Wang, Xiaoming Yan, Peng Liu, Yabin Zhou\",\"doi\":\"10.4081/ejh.2025.4228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic kidney disease (CKD) impacts a vast number of individuals worldwide, culminating in renal fibrosis. Renal fibrosis serves as the main reason for end-stage renal failure. However, the current targeted treatment methods for renal fibrosis remain scarce. Aloe-emodin (AE) is a naturally occurring compound discovered in rhubarb and aloe. In this research, we investigated the underlying mechanisms of AE in adenine-induced mouse renal fibrosis models and TGFβ-1 stimulated renal tubular epithelial cells (HK-2). It was discovered that AE not only decelerated the decline of renal function in adenine-treated mice but also suppressed the expression of Collagen I and Fibronectin. Furthermore, network pharmacology analysis suggested that AE's treatment of renal fibrosis might function via the PI3K/Akt/GSK3β signaling pathway. In vivo and in vitro Western blot and immunofluorescence findings demonstrate that AE significantly resists the advancement of renal fibrosis by inhibiting α-smooth muscle actin (α-SMA) and vimentin. Simultaneously, findings from 740Y-P (a PI3K agonist) and siRNA (PI3K) indicate that AE inhibits the expression of the PI3K/Akt/GSK3β cascade by lowering PI3K's phosphorylation level. From a mechanistic perspective, through molecular docking and plasmid transfection, the specific base sequence of PI3K in HK-2 cells was altered for experimental validation. The outcomes illustrate that AE can directly bind with PI3K, inhibiting its activation, impeding the PI3K/Akt/GSK3β signal transmission, thereby ultimately suppressing renal fibrosis progression. In conclusion, PI3K/Akt/GSK3β is a potential therapeutic target for CKD-related renal fibrosis, making AE a promising new treatment alternative for this condition.</p>\",\"PeriodicalId\":50487,\"journal\":{\"name\":\"European Journal of Histochemistry\",\"volume\":\"69 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Histochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4081/ejh.2025.4228\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Histochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4081/ejh.2025.4228","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Chronic kidney disease (CKD) impacts a vast number of individuals worldwide, culminating in renal fibrosis. Renal fibrosis serves as the main reason for end-stage renal failure. However, the current targeted treatment methods for renal fibrosis remain scarce. Aloe-emodin (AE) is a naturally occurring compound discovered in rhubarb and aloe. In this research, we investigated the underlying mechanisms of AE in adenine-induced mouse renal fibrosis models and TGFβ-1 stimulated renal tubular epithelial cells (HK-2). It was discovered that AE not only decelerated the decline of renal function in adenine-treated mice but also suppressed the expression of Collagen I and Fibronectin. Furthermore, network pharmacology analysis suggested that AE's treatment of renal fibrosis might function via the PI3K/Akt/GSK3β signaling pathway. In vivo and in vitro Western blot and immunofluorescence findings demonstrate that AE significantly resists the advancement of renal fibrosis by inhibiting α-smooth muscle actin (α-SMA) and vimentin. Simultaneously, findings from 740Y-P (a PI3K agonist) and siRNA (PI3K) indicate that AE inhibits the expression of the PI3K/Akt/GSK3β cascade by lowering PI3K's phosphorylation level. From a mechanistic perspective, through molecular docking and plasmid transfection, the specific base sequence of PI3K in HK-2 cells was altered for experimental validation. The outcomes illustrate that AE can directly bind with PI3K, inhibiting its activation, impeding the PI3K/Akt/GSK3β signal transmission, thereby ultimately suppressing renal fibrosis progression. In conclusion, PI3K/Akt/GSK3β is a potential therapeutic target for CKD-related renal fibrosis, making AE a promising new treatment alternative for this condition.
期刊介绍:
The Journal publishes original papers concerning investigations by histochemical and immunohistochemical methods, and performed with the aid of light, super-resolution and electron microscopy, cytometry and imaging techniques. Coverage extends to:
functional cell and tissue biology in animals and plants;
cell differentiation and death;
cell-cell interaction and molecular trafficking;
biology of cell development and senescence;
nerve and muscle cell biology;
cellular basis of diseases.
The histochemical approach is nowadays essentially aimed at locating molecules in the very place where they exert their biological roles, and at describing dynamically specific chemical activities in living cells. Basic research on cell functional organization is essential for understanding the mechanisms underlying major biological processes such as differentiation, the control of tissue homeostasis, and the regulation of normal and tumor cell growth. Even more than in the past, the European Journal of Histochemistry, as a journal of functional cytology, represents the venue where cell scientists may present and discuss their original results, technical improvements and theories.