Jia-Qing Tong, Jeffrey R Binder, Lisa L Conant, Stephen Mazurchuk, Andrew J Anderson, Leonardo Fernandino
{"title":"大脑中事件和对象概念的共同表征代码。","authors":"Jia-Qing Tong, Jeffrey R Binder, Lisa L Conant, Stephen Mazurchuk, Andrew J Anderson, Leonardo Fernandino","doi":"10.1523/JNEUROSCI.2166-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Events and objects are two fundamental ways in which humans conceptualize their experience of the world. Despite the significance of this distinction for human cognition, it remains unclear whether the neural representations of object and event concepts are categorically distinct or, instead, can be explained in terms of a shared representational code. We investigated this question by analyzing fMRI data acquired from human participants (males and females) while they rated their familiarity with the meanings of individual words (all nouns) denoting object and event concepts. Multivoxel pattern analyses indicated that both categories of lexical concepts are represented in overlapping fashion throughout the association cortex, even in the areas that showed the strongest selectivity for one or the other type in univariate contrasts. Crucially, in these areas, a feature-based model trained on neural responses to individual event concepts successfully decoded object concepts from their corresponding activation patterns (and vice versa), showing that these two categories share a common representational code. This code was effectively modeled by a set of experiential feature ratings, which also accounted for the mean activation differences between these two categories. These results indicate that neuroanatomical dissociations between events and objects emerge from quantitative differences in the cortical distribution of more fundamental features of experience. Characterizing this representational code is an important step in the development of theory-driven brain-computer interface technologies capable of decoding conceptual content directly from brain activity.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Common Representational Code for Event and Object Concepts in the Brain.\",\"authors\":\"Jia-Qing Tong, Jeffrey R Binder, Lisa L Conant, Stephen Mazurchuk, Andrew J Anderson, Leonardo Fernandino\",\"doi\":\"10.1523/JNEUROSCI.2166-24.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Events and objects are two fundamental ways in which humans conceptualize their experience of the world. Despite the significance of this distinction for human cognition, it remains unclear whether the neural representations of object and event concepts are categorically distinct or, instead, can be explained in terms of a shared representational code. We investigated this question by analyzing fMRI data acquired from human participants (males and females) while they rated their familiarity with the meanings of individual words (all nouns) denoting object and event concepts. Multivoxel pattern analyses indicated that both categories of lexical concepts are represented in overlapping fashion throughout the association cortex, even in the areas that showed the strongest selectivity for one or the other type in univariate contrasts. Crucially, in these areas, a feature-based model trained on neural responses to individual event concepts successfully decoded object concepts from their corresponding activation patterns (and vice versa), showing that these two categories share a common representational code. This code was effectively modeled by a set of experiential feature ratings, which also accounted for the mean activation differences between these two categories. These results indicate that neuroanatomical dissociations between events and objects emerge from quantitative differences in the cortical distribution of more fundamental features of experience. Characterizing this representational code is an important step in the development of theory-driven brain-computer interface technologies capable of decoding conceptual content directly from brain activity.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.2166-24.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.2166-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A Common Representational Code for Event and Object Concepts in the Brain.
Events and objects are two fundamental ways in which humans conceptualize their experience of the world. Despite the significance of this distinction for human cognition, it remains unclear whether the neural representations of object and event concepts are categorically distinct or, instead, can be explained in terms of a shared representational code. We investigated this question by analyzing fMRI data acquired from human participants (males and females) while they rated their familiarity with the meanings of individual words (all nouns) denoting object and event concepts. Multivoxel pattern analyses indicated that both categories of lexical concepts are represented in overlapping fashion throughout the association cortex, even in the areas that showed the strongest selectivity for one or the other type in univariate contrasts. Crucially, in these areas, a feature-based model trained on neural responses to individual event concepts successfully decoded object concepts from their corresponding activation patterns (and vice versa), showing that these two categories share a common representational code. This code was effectively modeled by a set of experiential feature ratings, which also accounted for the mean activation differences between these two categories. These results indicate that neuroanatomical dissociations between events and objects emerge from quantitative differences in the cortical distribution of more fundamental features of experience. Characterizing this representational code is an important step in the development of theory-driven brain-computer interface technologies capable of decoding conceptual content directly from brain activity.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles