Andrés Sanchéz, Leon A Valencia, Jorge M Ramirez Osorio
{"title":"随机高斯捕食-猎物模型:噪声引起的灭绝和不变性。","authors":"Andrés Sanchéz, Leon A Valencia, Jorge M Ramirez Osorio","doi":"10.3934/mbe.2025073","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the Gause predator-prey with general bounded or sub‑linear functional responses, - which includes those of Holling types Ⅰ-Ⅳ. - and multiplicative Gaussian noise. In contrast to previous studies, the prey in our model follows logistic dynamics while the predator's population is solely regulated by consumption of the prey. To ensure well-posedeness, we derive explicit Lyapunov-type criteria ensuring global positivity and moment boundedness of solutions. We find conditions for noise‑induced extinctions, proving that stochasticity can drive either population to collapse even when the deterministic analogue predicts stable coexistence. In the case when the predator becomes extinct, we establish a limiting distribution for the predator's population. Last, for functional responses of Holling type Ⅰ, we provide sufficient conditions on the intensity of the noise for the existence and uniqueness of a stationary distribution.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 8","pages":"1999-2019"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Stochastic Gause Predator-Prey model: Noise-induced extinctions and invariance.\",\"authors\":\"Andrés Sanchéz, Leon A Valencia, Jorge M Ramirez Osorio\",\"doi\":\"10.3934/mbe.2025073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the Gause predator-prey with general bounded or sub‑linear functional responses, - which includes those of Holling types Ⅰ-Ⅳ. - and multiplicative Gaussian noise. In contrast to previous studies, the prey in our model follows logistic dynamics while the predator's population is solely regulated by consumption of the prey. To ensure well-posedeness, we derive explicit Lyapunov-type criteria ensuring global positivity and moment boundedness of solutions. We find conditions for noise‑induced extinctions, proving that stochasticity can drive either population to collapse even when the deterministic analogue predicts stable coexistence. In the case when the predator becomes extinct, we establish a limiting distribution for the predator's population. Last, for functional responses of Holling type Ⅰ, we provide sufficient conditions on the intensity of the noise for the existence and uniqueness of a stationary distribution.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"22 8\",\"pages\":\"1999-2019\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2025073\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
The Stochastic Gause Predator-Prey model: Noise-induced extinctions and invariance.
We consider the Gause predator-prey with general bounded or sub‑linear functional responses, - which includes those of Holling types Ⅰ-Ⅳ. - and multiplicative Gaussian noise. In contrast to previous studies, the prey in our model follows logistic dynamics while the predator's population is solely regulated by consumption of the prey. To ensure well-posedeness, we derive explicit Lyapunov-type criteria ensuring global positivity and moment boundedness of solutions. We find conditions for noise‑induced extinctions, proving that stochasticity can drive either population to collapse even when the deterministic analogue predicts stable coexistence. In the case when the predator becomes extinct, we establish a limiting distribution for the predator's population. Last, for functional responses of Holling type Ⅰ, we provide sufficient conditions on the intensity of the noise for the existence and uniqueness of a stationary distribution.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).