随机高斯捕食-猎物模型:噪声引起的灭绝和不变性。

IF 2.6 4区 工程技术 Q1 Mathematics
Andrés Sanchéz, Leon A Valencia, Jorge M Ramirez Osorio
{"title":"随机高斯捕食-猎物模型:噪声引起的灭绝和不变性。","authors":"Andrés Sanchéz, Leon A Valencia, Jorge M Ramirez Osorio","doi":"10.3934/mbe.2025073","DOIUrl":null,"url":null,"abstract":"<p><p>We consider the Gause predator-prey with general bounded or sub‑linear functional responses, - which includes those of Holling types Ⅰ-Ⅳ. - and multiplicative Gaussian noise. In contrast to previous studies, the prey in our model follows logistic dynamics while the predator's population is solely regulated by consumption of the prey. To ensure well-posedeness, we derive explicit Lyapunov-type criteria ensuring global positivity and moment boundedness of solutions. We find conditions for noise‑induced extinctions, proving that stochasticity can drive either population to collapse even when the deterministic analogue predicts stable coexistence. In the case when the predator becomes extinct, we establish a limiting distribution for the predator's population. Last, for functional responses of Holling type Ⅰ, we provide sufficient conditions on the intensity of the noise for the existence and uniqueness of a stationary distribution.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 8","pages":"1999-2019"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Stochastic Gause Predator-Prey model: Noise-induced extinctions and invariance.\",\"authors\":\"Andrés Sanchéz, Leon A Valencia, Jorge M Ramirez Osorio\",\"doi\":\"10.3934/mbe.2025073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We consider the Gause predator-prey with general bounded or sub‑linear functional responses, - which includes those of Holling types Ⅰ-Ⅳ. - and multiplicative Gaussian noise. In contrast to previous studies, the prey in our model follows logistic dynamics while the predator's population is solely regulated by consumption of the prey. To ensure well-posedeness, we derive explicit Lyapunov-type criteria ensuring global positivity and moment boundedness of solutions. We find conditions for noise‑induced extinctions, proving that stochasticity can drive either population to collapse even when the deterministic analogue predicts stable coexistence. In the case when the predator becomes extinct, we establish a limiting distribution for the predator's population. Last, for functional responses of Holling type Ⅰ, we provide sufficient conditions on the intensity of the noise for the existence and uniqueness of a stationary distribution.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"22 8\",\"pages\":\"1999-2019\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2025073\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑具有一般有界或亚线性功能响应的高斯捕食者-猎物,其中包括Holling类型Ⅰ-Ⅳ。-和乘法高斯噪声。与以往的研究相比,我们的模型中的猎物遵循逻辑动力学,而捕食者的数量完全由猎物的消耗来调节。为了保证解的适定性,我们导出了保证解的全局正性和矩有界性的显式lyapunov型判据。我们发现了噪声诱导灭绝的条件,证明了即使确定性模拟预测稳定共存,随机性也可以驱动任一种群的崩溃。在捕食者灭绝的情况下,我们建立了捕食者种群的极限分布。最后,对于Holling型Ⅰ的函数响应,给出了平稳分布存在唯一性的噪声强度的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Stochastic Gause Predator-Prey model: Noise-induced extinctions and invariance.

We consider the Gause predator-prey with general bounded or sub‑linear functional responses, - which includes those of Holling types Ⅰ-Ⅳ. - and multiplicative Gaussian noise. In contrast to previous studies, the prey in our model follows logistic dynamics while the predator's population is solely regulated by consumption of the prey. To ensure well-posedeness, we derive explicit Lyapunov-type criteria ensuring global positivity and moment boundedness of solutions. We find conditions for noise‑induced extinctions, proving that stochasticity can drive either population to collapse even when the deterministic analogue predicts stable coexistence. In the case when the predator becomes extinct, we establish a limiting distribution for the predator's population. Last, for functional responses of Holling type Ⅰ, we provide sufficient conditions on the intensity of the noise for the existence and uniqueness of a stationary distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信