血液透析的多变量最优控制:基于生理学的模拟研究。

IF 2.6 4区 工程技术 Q1 Mathematics
Redemtus Heru Tjahjana, Ratna Herdiana, Zani Anjani Rafsanjani Hsm, Yogi Ahmad Erlangga
{"title":"血液透析的多变量最优控制:基于生理学的模拟研究。","authors":"Redemtus Heru Tjahjana, Ratna Herdiana, Zani Anjani Rafsanjani Hsm, Yogi Ahmad Erlangga","doi":"10.3934/mbe.2025088","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel multivariable optimal control framework for hemodialysis, which uniquely integrates five physiological states (blood urea concentration, fluid volume, blood pressure, electrolytes, and hemoglobin) with three clinically adjustable inputs (ultrafiltration rate, blood flow, and dialysate composition). By employing the limited-memory Broyden-Fletcher-Goldfarb-Shanno-B (L-BFGS-B) algorithm with patient-specific box constraints, the model enforces patient-specific physiological safety limits while dynamically balancing clinical targets. Numerical simulations demonstrate the stabilization of key parameters within ±5% of clinical benchmarks (e.g., KDIGO guidelines), though deviations in the hemodynamic responses underscore the need for adaptive control in real-world scenarios. Urea clearance trajectories align with efficacy patterns observed in practice, while blood pressure fluctuations reveal systematic offsets that require protocol refinement. This work bridges control theory with hemodialysis dynamics, thus offering a simulation-driven foundation for future clinical validation and personalized treatment optimization.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 9","pages":"2409-2433"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariable optimal control for hemodialysis: A physiologically-grounded simulation study.\",\"authors\":\"Redemtus Heru Tjahjana, Ratna Herdiana, Zani Anjani Rafsanjani Hsm, Yogi Ahmad Erlangga\",\"doi\":\"10.3934/mbe.2025088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces a novel multivariable optimal control framework for hemodialysis, which uniquely integrates five physiological states (blood urea concentration, fluid volume, blood pressure, electrolytes, and hemoglobin) with three clinically adjustable inputs (ultrafiltration rate, blood flow, and dialysate composition). By employing the limited-memory Broyden-Fletcher-Goldfarb-Shanno-B (L-BFGS-B) algorithm with patient-specific box constraints, the model enforces patient-specific physiological safety limits while dynamically balancing clinical targets. Numerical simulations demonstrate the stabilization of key parameters within ±5% of clinical benchmarks (e.g., KDIGO guidelines), though deviations in the hemodynamic responses underscore the need for adaptive control in real-world scenarios. Urea clearance trajectories align with efficacy patterns observed in practice, while blood pressure fluctuations reveal systematic offsets that require protocol refinement. This work bridges control theory with hemodialysis dynamics, thus offering a simulation-driven foundation for future clinical validation and personalized treatment optimization.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"22 9\",\"pages\":\"2409-2433\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2025088\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究引入了一种新的血液透析多变量最优控制框架,该框架独特地集成了五种生理状态(血尿素浓度、液体体积、血压、电解质和血红蛋白)和三种临床可调输入(超滤率、血流量和透析液成分)。该模型采用具有患者特异性盒约束的有限记忆broyden - fletcher - goldfarb - shannon - b (L-BFGS-B)算法,在动态平衡临床目标的同时,强制执行患者特异性生理安全限制。数值模拟表明,关键参数稳定在临床基准(例如,KDIGO指南)的±5%以内,尽管血液动力学反应的偏差强调了在现实情况下需要自适应控制。尿素清除轨迹与实践中观察到的疗效模式一致,而血压波动揭示了需要改进方案的系统性偏移。这项工作将控制理论与血液透析动力学联系起来,从而为未来的临床验证和个性化治疗优化提供了模拟驱动的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariable optimal control for hemodialysis: A physiologically-grounded simulation study.

This study introduces a novel multivariable optimal control framework for hemodialysis, which uniquely integrates five physiological states (blood urea concentration, fluid volume, blood pressure, electrolytes, and hemoglobin) with three clinically adjustable inputs (ultrafiltration rate, blood flow, and dialysate composition). By employing the limited-memory Broyden-Fletcher-Goldfarb-Shanno-B (L-BFGS-B) algorithm with patient-specific box constraints, the model enforces patient-specific physiological safety limits while dynamically balancing clinical targets. Numerical simulations demonstrate the stabilization of key parameters within ±5% of clinical benchmarks (e.g., KDIGO guidelines), though deviations in the hemodynamic responses underscore the need for adaptive control in real-world scenarios. Urea clearance trajectories align with efficacy patterns observed in practice, while blood pressure fluctuations reveal systematic offsets that require protocol refinement. This work bridges control theory with hemodialysis dynamics, thus offering a simulation-driven foundation for future clinical validation and personalized treatment optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信