XFEL光照下蛋白质中的重元素损伤播种。

IF 3 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-09-01 Epub Date: 2025-08-27 DOI:10.1107/S1600577525005934
Spencer K Passmore, Alaric L Sanders, Andrew V Martin, Harry M Quiney
{"title":"XFEL光照下蛋白质中的重元素损伤播种。","authors":"Spencer K Passmore, Alaric L Sanders, Andrew V Martin, Harry M Quiney","doi":"10.1107/S1600577525005934","DOIUrl":null,"url":null,"abstract":"<p><p>Serial femtosecond X-ray crystallography (SFX) captures the structure and dynamics of biological macromolecules at high spatial and temporal resolutions. The ultrashort pulse produced by an X-ray free-electron laser (XFEL) `outruns' much of the radiation damage that impairs conventional crystallography. However, the rapid onset of `electronic damage' due to ionization limits this benefit. Here, we distinguish the influence of different atomic species on the ionization of protein crystals by employing a plasma code that tracks the unbound electrons as a continuous energy distribution. The simulations show that trace quantities of heavy atoms (Z > 10) contribute a substantial proportion of global radiation damage by rapidly seeding electron ionization cascades. In a typical protein crystal, sulfur atoms and solvated salts induce a substantial fraction of light-atom ionization. In further modeling of various targets, global ionization peaks at photon energies roughly 2 keV above inner-shell absorption edges, where sub-2 keV photoelectrons ejected from these shells initiate ionization cascades that are briefer than the XFEL pulse. These results indicate that relatively small quantities of heavy elements can substantially affect global radiation damage in XFEL experiments.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1124-1142"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416421/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heavy-element damage seeding in proteins under XFEL illumination.\",\"authors\":\"Spencer K Passmore, Alaric L Sanders, Andrew V Martin, Harry M Quiney\",\"doi\":\"10.1107/S1600577525005934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Serial femtosecond X-ray crystallography (SFX) captures the structure and dynamics of biological macromolecules at high spatial and temporal resolutions. The ultrashort pulse produced by an X-ray free-electron laser (XFEL) `outruns' much of the radiation damage that impairs conventional crystallography. However, the rapid onset of `electronic damage' due to ionization limits this benefit. Here, we distinguish the influence of different atomic species on the ionization of protein crystals by employing a plasma code that tracks the unbound electrons as a continuous energy distribution. The simulations show that trace quantities of heavy atoms (Z > 10) contribute a substantial proportion of global radiation damage by rapidly seeding electron ionization cascades. In a typical protein crystal, sulfur atoms and solvated salts induce a substantial fraction of light-atom ionization. In further modeling of various targets, global ionization peaks at photon energies roughly 2 keV above inner-shell absorption edges, where sub-2 keV photoelectrons ejected from these shells initiate ionization cascades that are briefer than the XFEL pulse. These results indicate that relatively small quantities of heavy elements can substantially affect global radiation damage in XFEL experiments.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\" \",\"pages\":\"1124-1142\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577525005934\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577525005934","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连续飞秒x射线晶体学(SFX)在高空间和时间分辨率下捕获生物大分子的结构和动力学。由x射线自由电子激光器(XFEL)产生的超短脉冲“超越”了许多损害传统晶体学的辐射损伤。然而,由于电离引起的“电子损伤”的快速发作限制了这一益处。在这里,我们区分不同原子种类对蛋白质晶体电离的影响,采用等离子体代码,跟踪未束缚的电子作为一个连续的能量分布。模拟结果表明,痕量重原子(zbbb10)通过快速播种电子电离级联,对全球辐射损伤贡献了相当大的比例。在一个典型的蛋白质晶体中,硫原子和溶剂化盐诱导了相当一部分的光原子电离。在对各种目标的进一步建模中,全局电离在光子能量约为2kev的内壳吸收边缘处达到峰值,其中从这些壳层喷射出的低于2kev的光电子引发了比XFEL脉冲更短的电离级联。这些结果表明,相对少量的重元素可以显著影响XFEL实验中的整体辐射损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heavy-element damage seeding in proteins under XFEL illumination.

Serial femtosecond X-ray crystallography (SFX) captures the structure and dynamics of biological macromolecules at high spatial and temporal resolutions. The ultrashort pulse produced by an X-ray free-electron laser (XFEL) `outruns' much of the radiation damage that impairs conventional crystallography. However, the rapid onset of `electronic damage' due to ionization limits this benefit. Here, we distinguish the influence of different atomic species on the ionization of protein crystals by employing a plasma code that tracks the unbound electrons as a continuous energy distribution. The simulations show that trace quantities of heavy atoms (Z > 10) contribute a substantial proportion of global radiation damage by rapidly seeding electron ionization cascades. In a typical protein crystal, sulfur atoms and solvated salts induce a substantial fraction of light-atom ionization. In further modeling of various targets, global ionization peaks at photon energies roughly 2 keV above inner-shell absorption edges, where sub-2 keV photoelectrons ejected from these shells initiate ionization cascades that are briefer than the XFEL pulse. These results indicate that relatively small quantities of heavy elements can substantially affect global radiation damage in XFEL experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信