美洲的铅中毒:来源、法规、健康影响和分子机制。

IF 4.4 Q1 TOXICOLOGY
Blanca Miriam Torres-Mendoza, Asbiel Felipe Garibaldi-Ríos, Lourdes Del Carmen Rizo De La Torre, Ana María Puebla-Pérez, Luis E Figuera, Guillermo Moisés Zúñiga-González, Belinda Claudia Gómez-Meda, Itzae Adonai Gutiérrez-Hurtado, Elvia Harumi Scott-López, Verónica Vázquez-González, Celeste Patricia Gazcón-Rivas, Martha Patricia Gallegos-Arreola
{"title":"美洲的铅中毒:来源、法规、健康影响和分子机制。","authors":"Blanca Miriam Torres-Mendoza, Asbiel Felipe Garibaldi-Ríos, Lourdes Del Carmen Rizo De La Torre, Ana María Puebla-Pérez, Luis E Figuera, Guillermo Moisés Zúñiga-González, Belinda Claudia Gómez-Meda, Itzae Adonai Gutiérrez-Hurtado, Elvia Harumi Scott-López, Verónica Vázquez-González, Celeste Patricia Gazcón-Rivas, Martha Patricia Gallegos-Arreola","doi":"10.3390/jox15040134","DOIUrl":null,"url":null,"abstract":"<p><p>Lead poisoning is a significant public health issue, contributing to 0.6% of the global disease burden and disproportionately affecting developing countries. Vulnerable populations, such as children, pregnant women, and low-income communities, remain at high risk, often exposed to lead levels exceeding safe thresholds. While the problem is global, this review focuses specifically on the Americas, regions with diverse regulatory landscapes and persistent environmental lead exposure. Regulatory frameworks vary widely, and the lack of global consensus on acceptable blood lead levels leaves important gaps in protection. This review compiles and updates knowledge on emerging sources of lead exposure in the region, evaluates advancements in regulatory approaches, and analyzes the molecular impacts of lead on human health. Using the Comparative Toxicogenomics Database (CTD), lead was found to interact with 3448 genes, including those linked to inflammation and oxidative stress, and is associated with 4401 diseases and 799 disrupted pathways. These findings emphasize the need for regionally tailored interventions, strengthened policies, and further research on its health impacts.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387641/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lead Poisoning in the Americas: Sources, Regulations, Health Impacts, and Molecular Mechanisms.\",\"authors\":\"Blanca Miriam Torres-Mendoza, Asbiel Felipe Garibaldi-Ríos, Lourdes Del Carmen Rizo De La Torre, Ana María Puebla-Pérez, Luis E Figuera, Guillermo Moisés Zúñiga-González, Belinda Claudia Gómez-Meda, Itzae Adonai Gutiérrez-Hurtado, Elvia Harumi Scott-López, Verónica Vázquez-González, Celeste Patricia Gazcón-Rivas, Martha Patricia Gallegos-Arreola\",\"doi\":\"10.3390/jox15040134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lead poisoning is a significant public health issue, contributing to 0.6% of the global disease burden and disproportionately affecting developing countries. Vulnerable populations, such as children, pregnant women, and low-income communities, remain at high risk, often exposed to lead levels exceeding safe thresholds. While the problem is global, this review focuses specifically on the Americas, regions with diverse regulatory landscapes and persistent environmental lead exposure. Regulatory frameworks vary widely, and the lack of global consensus on acceptable blood lead levels leaves important gaps in protection. This review compiles and updates knowledge on emerging sources of lead exposure in the region, evaluates advancements in regulatory approaches, and analyzes the molecular impacts of lead on human health. Using the Comparative Toxicogenomics Database (CTD), lead was found to interact with 3448 genes, including those linked to inflammation and oxidative stress, and is associated with 4401 diseases and 799 disrupted pathways. These findings emphasize the need for regionally tailored interventions, strengthened policies, and further research on its health impacts.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15040134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15040134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铅中毒是一个重大的公共卫生问题,占全球疾病负担的0.6%,对发展中国家的影响尤为严重。弱势群体,如儿童、孕妇和低收入社区,仍然处于高风险之中,经常接触到超过安全阈值的铅。虽然这个问题是全球性的,但本次审查特别关注美洲,这些地区的监管格局不同,环境铅暴露持续存在。监管框架差异很大,对可接受的血铅水平缺乏全球共识,在保护方面存在重大差距。本综述汇编和更新了有关该地区新出现的铅接触源的知识,评估了监管方法的进展,并分析了铅对人类健康的分子影响。使用比较毒物基因组学数据库(CTD),发现铅与3448个基因相互作用,包括与炎症和氧化应激有关的基因,并与4401种疾病和799种被破坏的途径有关。这些研究结果强调,有必要针对不同地区采取有针对性的干预措施,加强政策,并进一步研究其对健康的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lead Poisoning in the Americas: Sources, Regulations, Health Impacts, and Molecular Mechanisms.

Lead Poisoning in the Americas: Sources, Regulations, Health Impacts, and Molecular Mechanisms.

Lead Poisoning in the Americas: Sources, Regulations, Health Impacts, and Molecular Mechanisms.

Lead Poisoning in the Americas: Sources, Regulations, Health Impacts, and Molecular Mechanisms.

Lead poisoning is a significant public health issue, contributing to 0.6% of the global disease burden and disproportionately affecting developing countries. Vulnerable populations, such as children, pregnant women, and low-income communities, remain at high risk, often exposed to lead levels exceeding safe thresholds. While the problem is global, this review focuses specifically on the Americas, regions with diverse regulatory landscapes and persistent environmental lead exposure. Regulatory frameworks vary widely, and the lack of global consensus on acceptable blood lead levels leaves important gaps in protection. This review compiles and updates knowledge on emerging sources of lead exposure in the region, evaluates advancements in regulatory approaches, and analyzes the molecular impacts of lead on human health. Using the Comparative Toxicogenomics Database (CTD), lead was found to interact with 3448 genes, including those linked to inflammation and oxidative stress, and is associated with 4401 diseases and 799 disrupted pathways. These findings emphasize the need for regionally tailored interventions, strengthened policies, and further research on its health impacts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信