Daniele Portelli, Sabrina Loteta, Mariangela D'Angelo, Cosimo Galletti, Leonard Freni, Rocco Bruno, Francesco Ciodaro, Angela Alibrandi, Giuseppe Alberti
{"title":"ChatGPT和Microsoft Copilot用于人工耳蜗侧边选择的初步研究。","authors":"Daniele Portelli, Sabrina Loteta, Mariangela D'Angelo, Cosimo Galletti, Leonard Freni, Rocco Bruno, Francesco Ciodaro, Angela Alibrandi, Giuseppe Alberti","doi":"10.3390/audiolres15040100","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Artificial Intelligence (AI) is increasingly being applied in otolaryngology, including cochlear implants (CIs). This study evaluates the accuracy and completeness of ChatGPT-4 and Microsoft Copilot in determining the appropriate implantation side based on audiological and radiological data, as well as the presence of tinnitus. <b>Methods</b>: Data from 22 CI patients (11 males, 11 females; 12 right-sided, 10 left-sided implants) were used to query both AI models. Each patient's audiometric thresholds, hearing aid benefit, tinnitus presence, and radiological findings were provided. The AI-generated responses were compared to the clinician-chosen sides. Accuracy and completeness were scored by two independent reviewers. <b>Results</b>: ChatGPT had a 50% concordance rate for right-side implantation and a 70% concordance rate for left-side implantation, while Microsoft Copilot achieved 75% and 90%, respectively. Chi-square tests showed significant associations between AI-suggested and clinician-chosen sides for both AI (<i>p</i> < 0.05). ChatGPT outperformed Microsoft Copilot in identifying radiological alterations (60% vs. 40%) and tinnitus presence (77.8% vs. 66.7%). Cronbach's alpha was >0.70 only for ChatGPT accuracy, indicating better agreement between reviewers. <b>Conclusions</b>: Both AI models showed significant alignment with clinician decisions. Microsoft Copilot was more accurate in implantation side selection, while ChatGPT better recognized radiological alterations and tinnitus. These results highlight AI's potential as a clinical decision support tool in CI candidacy, although further research is needed to refine its application in complex cases.</p>","PeriodicalId":44133,"journal":{"name":"Audiology Research","volume":"15 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383040/pdf/","citationCount":"0","resultStr":"{\"title\":\"ChatGPT and Microsoft Copilot for Cochlear Implant Side Selection: A Preliminary Study.\",\"authors\":\"Daniele Portelli, Sabrina Loteta, Mariangela D'Angelo, Cosimo Galletti, Leonard Freni, Rocco Bruno, Francesco Ciodaro, Angela Alibrandi, Giuseppe Alberti\",\"doi\":\"10.3390/audiolres15040100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Artificial Intelligence (AI) is increasingly being applied in otolaryngology, including cochlear implants (CIs). This study evaluates the accuracy and completeness of ChatGPT-4 and Microsoft Copilot in determining the appropriate implantation side based on audiological and radiological data, as well as the presence of tinnitus. <b>Methods</b>: Data from 22 CI patients (11 males, 11 females; 12 right-sided, 10 left-sided implants) were used to query both AI models. Each patient's audiometric thresholds, hearing aid benefit, tinnitus presence, and radiological findings were provided. The AI-generated responses were compared to the clinician-chosen sides. Accuracy and completeness were scored by two independent reviewers. <b>Results</b>: ChatGPT had a 50% concordance rate for right-side implantation and a 70% concordance rate for left-side implantation, while Microsoft Copilot achieved 75% and 90%, respectively. Chi-square tests showed significant associations between AI-suggested and clinician-chosen sides for both AI (<i>p</i> < 0.05). ChatGPT outperformed Microsoft Copilot in identifying radiological alterations (60% vs. 40%) and tinnitus presence (77.8% vs. 66.7%). Cronbach's alpha was >0.70 only for ChatGPT accuracy, indicating better agreement between reviewers. <b>Conclusions</b>: Both AI models showed significant alignment with clinician decisions. Microsoft Copilot was more accurate in implantation side selection, while ChatGPT better recognized radiological alterations and tinnitus. These results highlight AI's potential as a clinical decision support tool in CI candidacy, although further research is needed to refine its application in complex cases.</p>\",\"PeriodicalId\":44133,\"journal\":{\"name\":\"Audiology Research\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383040/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Audiology Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/audiolres15040100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Audiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/audiolres15040100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
ChatGPT and Microsoft Copilot for Cochlear Implant Side Selection: A Preliminary Study.
Background/Objectives: Artificial Intelligence (AI) is increasingly being applied in otolaryngology, including cochlear implants (CIs). This study evaluates the accuracy and completeness of ChatGPT-4 and Microsoft Copilot in determining the appropriate implantation side based on audiological and radiological data, as well as the presence of tinnitus. Methods: Data from 22 CI patients (11 males, 11 females; 12 right-sided, 10 left-sided implants) were used to query both AI models. Each patient's audiometric thresholds, hearing aid benefit, tinnitus presence, and radiological findings were provided. The AI-generated responses were compared to the clinician-chosen sides. Accuracy and completeness were scored by two independent reviewers. Results: ChatGPT had a 50% concordance rate for right-side implantation and a 70% concordance rate for left-side implantation, while Microsoft Copilot achieved 75% and 90%, respectively. Chi-square tests showed significant associations between AI-suggested and clinician-chosen sides for both AI (p < 0.05). ChatGPT outperformed Microsoft Copilot in identifying radiological alterations (60% vs. 40%) and tinnitus presence (77.8% vs. 66.7%). Cronbach's alpha was >0.70 only for ChatGPT accuracy, indicating better agreement between reviewers. Conclusions: Both AI models showed significant alignment with clinician decisions. Microsoft Copilot was more accurate in implantation side selection, while ChatGPT better recognized radiological alterations and tinnitus. These results highlight AI's potential as a clinical decision support tool in CI candidacy, although further research is needed to refine its application in complex cases.
期刊介绍:
The mission of Audiology Research is to publish contemporary, ethical, clinically relevant scientific researches related to the basic science and clinical aspects of the auditory and vestibular system and diseases of the ear that can be used by clinicians, scientists and specialists to improve understanding and treatment of patients with audiological and neurotological disorders.