污水污泥中PFAS的管理:暴露途径、影响和处理创新。

IF 4.4 Q1 TOXICOLOGY
Luoana Florentina Pascu, Valentina Andreea Petre, Ioana Antonia Cimpean, Iuliana Paun, Florinela Pirvu, Florentina Laura Chiriac
{"title":"污水污泥中PFAS的管理:暴露途径、影响和处理创新。","authors":"Luoana Florentina Pascu, Valentina Andreea Petre, Ioana Antonia Cimpean, Iuliana Paun, Florinela Pirvu, Florentina Laura Chiriac","doi":"10.3390/jox15040135","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are a global concern due to their persistence, ubiquity, and accumulation in living organisms. Found in soils, biosolids, water, and the food chain, they pose health risks such as hormone disruption, immune damage, reproductive issues, and cancer. Regulations mainly target older PFAS like PFOA and PFOS, while many newer PFAS, including breakdown products, are poorly understood in terms of distribution, behavior, and toxicity. To address this complex issue, this review offers a detailed overview of human exposure to PFAS and their toxic effects. It highlights biosolids as a key, understudied source of PFAS in the environment. The review also discusses limitations of testing, missing long-term cleanup data, and regulatory issues that neglect total exposure and vulnerable populations. Additionally, it evaluates, in the specific context of biosolids management, the effectiveness, scalability, benefits, and drawbacks of various treatment technologies, such as thermal processes (pyrolysis, incineration, smoldering combustion), advanced oxidation, adsorption, hydrothermal liquefaction, and biological degradation. This work combines environmental science, toxicology, and engineering to outline PFAS management in biosolids and proposes a research and policy plan. Focusing on regulating PFAS as a group, validating real-world results, and employing adaptable treatment strategies underscores the need for a coordinated, science-based effort to reduce PFAS risks worldwide.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387247/pdf/","citationCount":"0","resultStr":"{\"title\":\"Managing PFAS in Sewage Sludge: Exposure Pathways, Impacts, and Treatment Innovations.\",\"authors\":\"Luoana Florentina Pascu, Valentina Andreea Petre, Ioana Antonia Cimpean, Iuliana Paun, Florinela Pirvu, Florentina Laura Chiriac\",\"doi\":\"10.3390/jox15040135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Per- and polyfluoroalkyl substances (PFAS) are a global concern due to their persistence, ubiquity, and accumulation in living organisms. Found in soils, biosolids, water, and the food chain, they pose health risks such as hormone disruption, immune damage, reproductive issues, and cancer. Regulations mainly target older PFAS like PFOA and PFOS, while many newer PFAS, including breakdown products, are poorly understood in terms of distribution, behavior, and toxicity. To address this complex issue, this review offers a detailed overview of human exposure to PFAS and their toxic effects. It highlights biosolids as a key, understudied source of PFAS in the environment. The review also discusses limitations of testing, missing long-term cleanup data, and regulatory issues that neglect total exposure and vulnerable populations. Additionally, it evaluates, in the specific context of biosolids management, the effectiveness, scalability, benefits, and drawbacks of various treatment technologies, such as thermal processes (pyrolysis, incineration, smoldering combustion), advanced oxidation, adsorption, hydrothermal liquefaction, and biological degradation. This work combines environmental science, toxicology, and engineering to outline PFAS management in biosolids and proposes a research and policy plan. Focusing on regulating PFAS as a group, validating real-world results, and employing adaptable treatment strategies underscores the need for a coordinated, science-based effort to reduce PFAS risks worldwide.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12387247/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15040135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15040135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全氟烷基和多氟烷基物质(PFAS)因其在生物体中的持久性、普遍性和积累性而受到全球关注。它们存在于土壤、生物固体、水和食物链中,构成健康风险,如激素紊乱、免疫损伤、生殖问题和癌症。法规主要针对较老的PFAS,如PFOA和PFOS,而许多较新的PFAS,包括分解产物,在分布,行为和毒性方面知之甚少。为了解决这个复杂的问题,这篇综述提供了人类暴露于PFAS及其毒性作用的详细概述。它强调了生物固体是环境中PFAS的一个关键的,未充分研究的来源。该综述还讨论了检测的局限性,缺少长期清理数据,以及忽视总暴露和弱势群体的监管问题。此外,在生物固体管理的特定背景下,它评估了各种处理技术的有效性、可扩展性、优点和缺点,如热过程(热解、焚烧、阴燃)、高级氧化、吸附、水热液化和生物降解。本文结合环境科学、毒理学和工程学,概述了生物固体中PFAS的管理,并提出了研究和政策计划。重点关注PFAS作为一个群体的调节,验证现实世界的结果,并采用适应性治疗策略,强调需要协调一致,以科学为基础的努力来降低全球PFAS风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Managing PFAS in Sewage Sludge: Exposure Pathways, Impacts, and Treatment Innovations.

Managing PFAS in Sewage Sludge: Exposure Pathways, Impacts, and Treatment Innovations.

Managing PFAS in Sewage Sludge: Exposure Pathways, Impacts, and Treatment Innovations.

Managing PFAS in Sewage Sludge: Exposure Pathways, Impacts, and Treatment Innovations.

Per- and polyfluoroalkyl substances (PFAS) are a global concern due to their persistence, ubiquity, and accumulation in living organisms. Found in soils, biosolids, water, and the food chain, they pose health risks such as hormone disruption, immune damage, reproductive issues, and cancer. Regulations mainly target older PFAS like PFOA and PFOS, while many newer PFAS, including breakdown products, are poorly understood in terms of distribution, behavior, and toxicity. To address this complex issue, this review offers a detailed overview of human exposure to PFAS and their toxic effects. It highlights biosolids as a key, understudied source of PFAS in the environment. The review also discusses limitations of testing, missing long-term cleanup data, and regulatory issues that neglect total exposure and vulnerable populations. Additionally, it evaluates, in the specific context of biosolids management, the effectiveness, scalability, benefits, and drawbacks of various treatment technologies, such as thermal processes (pyrolysis, incineration, smoldering combustion), advanced oxidation, adsorption, hydrothermal liquefaction, and biological degradation. This work combines environmental science, toxicology, and engineering to outline PFAS management in biosolids and proposes a research and policy plan. Focusing on regulating PFAS as a group, validating real-world results, and employing adaptable treatment strategies underscores the need for a coordinated, science-based effort to reduce PFAS risks worldwide.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信