Mira Alfikany, Khaula Sakhr, Stef Kremers, Sami El Khatib, Tanja Adam, Ree Meertens
{"title":"性别在健康成人睡眠限制对食欲和体重调节激素影响中的作用:一项人体研究的系统综述。","authors":"Mira Alfikany, Khaula Sakhr, Stef Kremers, Sami El Khatib, Tanja Adam, Ree Meertens","doi":"10.3390/clockssleep7030039","DOIUrl":null,"url":null,"abstract":"<p><p>Short sleep has been linked to overweight, possibly via alterations in appetite-regulating hormones, but findings are inconsistent. Sex differences may contribute to this variability. This systematic review examines whether sex modifies the hormonal response to sleep curtailment. PubMed, Embase, Cochrane, CINAHL, and PsycINFO were searched for English-language experimental studies published before December 2024. Included studies assessed at least one appetite-regulating hormone and presented sex-specific analyses. Studies involving health conditions affecting sleep, circadian misalignment, or additional interventions were excluded. Risk of bias was assessed using the Revised Cochrane Risk-of-Bias tool (RoB 2). Eight studies (<i>n</i> = 302 participants) met inclusion criteria. A narrative synthesis of the findings was conducted for each hormone separately to explore potential differences in their response to sleep restriction. Some sex-related variations in hormonal response to sleep restriction have been observed for leptin (four studies, <i>n</i> = 232), insulin (three studies, <i>n</i> = 56), glucagon-like peptide-1 (one study, <i>n</i> = 27), ghrelin (three studies, <i>n</i> = 87), adiponectin (two studies, <i>n</i> = 71) and thyroxine (two studies, <i>n</i> = 41). However, findings were inconsistent with no clear patterns. No sex-related differences were found for glucagon or PYY, though data were limited. Findings suggest sex may influence hormonal responses to sleep restriction, but inconsistencies highlight the need to consider factors such as BMI and energy balance. Well-controlled, adequately powered studies are needed to clarify these effects.</p>","PeriodicalId":33568,"journal":{"name":"Clocks & Sleep","volume":"7 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372055/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of Sex in the Impact of Sleep Restriction on Appetite- and Weight-Regulating Hormones in Healthy Adults: A Systematic Review of Human Studies.\",\"authors\":\"Mira Alfikany, Khaula Sakhr, Stef Kremers, Sami El Khatib, Tanja Adam, Ree Meertens\",\"doi\":\"10.3390/clockssleep7030039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Short sleep has been linked to overweight, possibly via alterations in appetite-regulating hormones, but findings are inconsistent. Sex differences may contribute to this variability. This systematic review examines whether sex modifies the hormonal response to sleep curtailment. PubMed, Embase, Cochrane, CINAHL, and PsycINFO were searched for English-language experimental studies published before December 2024. Included studies assessed at least one appetite-regulating hormone and presented sex-specific analyses. Studies involving health conditions affecting sleep, circadian misalignment, or additional interventions were excluded. Risk of bias was assessed using the Revised Cochrane Risk-of-Bias tool (RoB 2). Eight studies (<i>n</i> = 302 participants) met inclusion criteria. A narrative synthesis of the findings was conducted for each hormone separately to explore potential differences in their response to sleep restriction. Some sex-related variations in hormonal response to sleep restriction have been observed for leptin (four studies, <i>n</i> = 232), insulin (three studies, <i>n</i> = 56), glucagon-like peptide-1 (one study, <i>n</i> = 27), ghrelin (three studies, <i>n</i> = 87), adiponectin (two studies, <i>n</i> = 71) and thyroxine (two studies, <i>n</i> = 41). However, findings were inconsistent with no clear patterns. No sex-related differences were found for glucagon or PYY, though data were limited. Findings suggest sex may influence hormonal responses to sleep restriction, but inconsistencies highlight the need to consider factors such as BMI and energy balance. Well-controlled, adequately powered studies are needed to clarify these effects.</p>\",\"PeriodicalId\":33568,\"journal\":{\"name\":\"Clocks & Sleep\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clocks & Sleep\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/clockssleep7030039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clocks & Sleep","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/clockssleep7030039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The Role of Sex in the Impact of Sleep Restriction on Appetite- and Weight-Regulating Hormones in Healthy Adults: A Systematic Review of Human Studies.
Short sleep has been linked to overweight, possibly via alterations in appetite-regulating hormones, but findings are inconsistent. Sex differences may contribute to this variability. This systematic review examines whether sex modifies the hormonal response to sleep curtailment. PubMed, Embase, Cochrane, CINAHL, and PsycINFO were searched for English-language experimental studies published before December 2024. Included studies assessed at least one appetite-regulating hormone and presented sex-specific analyses. Studies involving health conditions affecting sleep, circadian misalignment, or additional interventions were excluded. Risk of bias was assessed using the Revised Cochrane Risk-of-Bias tool (RoB 2). Eight studies (n = 302 participants) met inclusion criteria. A narrative synthesis of the findings was conducted for each hormone separately to explore potential differences in their response to sleep restriction. Some sex-related variations in hormonal response to sleep restriction have been observed for leptin (four studies, n = 232), insulin (three studies, n = 56), glucagon-like peptide-1 (one study, n = 27), ghrelin (three studies, n = 87), adiponectin (two studies, n = 71) and thyroxine (two studies, n = 41). However, findings were inconsistent with no clear patterns. No sex-related differences were found for glucagon or PYY, though data were limited. Findings suggest sex may influence hormonal responses to sleep restriction, but inconsistencies highlight the need to consider factors such as BMI and energy balance. Well-controlled, adequately powered studies are needed to clarify these effects.