利用AgN3单原子位嵌入流动电池的独立电极中,实现高效的电化学CO2还原。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-07-06 eCollection Date: 2025-08-01 DOI:10.1002/smsc.202400643
M Nur Hossain, Ali Malek, Zhangsen Chen, Lei Zhang, Shuhui Sun, Hanshuo Liu, Roberto Neagu, Jigang Zhou, Hui Yuan, Christopher S Allen, Gianluigi Botton
{"title":"利用AgN3单原子位嵌入流动电池的独立电极中,实现高效的电化学CO2还原。","authors":"M Nur Hossain, Ali Malek, Zhangsen Chen, Lei Zhang, Shuhui Sun, Hanshuo Liu, Roberto Neagu, Jigang Zhou, Hui Yuan, Christopher S Allen, Gianluigi Botton","doi":"10.1002/smsc.202400643","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical reduction of CO<sub>2</sub> into valuable chemicals presents a promising strategy for carbon utilization; however, it remains challenging due to low activity, poor selectivity and stability of existing catalysts. In this study, we report the fabrication of free-standing silver single-atom catalysts (Ag SACs) designed for the efficient conversion of CO<sub>2</sub> to carbon monoxide (CO) at high current densities in a bicarbonate electrolyzer. The Ag single atoms dispersed within a carbon matrix, forming Ag-N<sub>3</sub> active sites for the electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub> RR). The catalytic activity and stability of the free-standing Ag SACs are evaluated at a current density of 100 mA cm<sup>-2</sup>, demonstrating prolonged electrolysis with consistent Faradaic efficiency for CO production. Density functional theory calculations revealed that the Ag-N<sub>3</sub> active site significantly lowers the energy barriers for the CO<sub>2</sub> absorption step compared to Ag-Ag and Ag-Ni sites, facilitating CO<sub>2</sub> activation and contributing to enhanced catalytic activity and stability during CO<sub>2</sub> reduction. Detailed analysis of the electronic structure and coordination environment further validates the superior performance of the Ag-N<sub>3</sub> site in the free-standing Ag SACs, underscoring their effectiveness in CO<sub>2</sub> electroreduction. These findings highlight the potential of the free-standing Ag SACs to advance CO<sub>2</sub> reduction technologies, offering enhanced efficiency and selectivity for CO<sub>2</sub> conversion.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 8","pages":"2400643"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362748/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient Electrochemical CO<sub>2</sub> Reduction Using AgN<sub>3</sub> Single-Atom Sites Embedded in Free-Standing Electrodes for Flow Cell Applications.\",\"authors\":\"M Nur Hossain, Ali Malek, Zhangsen Chen, Lei Zhang, Shuhui Sun, Hanshuo Liu, Roberto Neagu, Jigang Zhou, Hui Yuan, Christopher S Allen, Gianluigi Botton\",\"doi\":\"10.1002/smsc.202400643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrochemical reduction of CO<sub>2</sub> into valuable chemicals presents a promising strategy for carbon utilization; however, it remains challenging due to low activity, poor selectivity and stability of existing catalysts. In this study, we report the fabrication of free-standing silver single-atom catalysts (Ag SACs) designed for the efficient conversion of CO<sub>2</sub> to carbon monoxide (CO) at high current densities in a bicarbonate electrolyzer. The Ag single atoms dispersed within a carbon matrix, forming Ag-N<sub>3</sub> active sites for the electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub> RR). The catalytic activity and stability of the free-standing Ag SACs are evaluated at a current density of 100 mA cm<sup>-2</sup>, demonstrating prolonged electrolysis with consistent Faradaic efficiency for CO production. Density functional theory calculations revealed that the Ag-N<sub>3</sub> active site significantly lowers the energy barriers for the CO<sub>2</sub> absorption step compared to Ag-Ag and Ag-Ni sites, facilitating CO<sub>2</sub> activation and contributing to enhanced catalytic activity and stability during CO<sub>2</sub> reduction. Detailed analysis of the electronic structure and coordination environment further validates the superior performance of the Ag-N<sub>3</sub> site in the free-standing Ag SACs, underscoring their effectiveness in CO<sub>2</sub> electroreduction. These findings highlight the potential of the free-standing Ag SACs to advance CO<sub>2</sub> reduction technologies, offering enhanced efficiency and selectivity for CO<sub>2</sub> conversion.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 8\",\"pages\":\"2400643\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362748/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学将CO2还原为有价值的化学物质是一种很有前途的碳利用策略;然而,由于现有催化剂的活性低、选择性差和稳定性差,这仍然是一个挑战。在这项研究中,我们报道了独立的银单原子催化剂(Ag SACs)的制造,设计用于在碳酸氢盐电解槽中以高电流密度将CO2有效地转化为一氧化碳(CO)。Ag单原子分散在碳基体中,形成Ag- n3活性位点,用于电催化CO2还原反应(CO2 RR)。在100 mA cm-2的电流密度下,对独立Ag SACs的催化活性和稳定性进行了评估,证明了长时间电解对CO生产具有一致的法拉第效率。密度泛函理论计算表明,与Ag-Ag和Ag-Ni位点相比,Ag-N3活性位点显著降低了CO2吸收步骤的能垒,促进了CO2的活化,并有助于提高CO2还原过程中的催化活性和稳定性。详细的电子结构和配位环境分析进一步验证了Ag- n3位点在独立Ag SACs中的优越性能,强调了其在CO2电还原中的有效性。这些发现突出了独立的Ag SACs在推进二氧化碳减排技术方面的潜力,提供了更高的二氧化碳转化效率和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Electrochemical CO<sub>2</sub> Reduction Using AgN<sub>3</sub> Single-Atom Sites Embedded in Free-Standing Electrodes for Flow Cell Applications.

Efficient Electrochemical CO<sub>2</sub> Reduction Using AgN<sub>3</sub> Single-Atom Sites Embedded in Free-Standing Electrodes for Flow Cell Applications.

Efficient Electrochemical CO<sub>2</sub> Reduction Using AgN<sub>3</sub> Single-Atom Sites Embedded in Free-Standing Electrodes for Flow Cell Applications.

Efficient Electrochemical CO2 Reduction Using AgN3 Single-Atom Sites Embedded in Free-Standing Electrodes for Flow Cell Applications.

The electrochemical reduction of CO2 into valuable chemicals presents a promising strategy for carbon utilization; however, it remains challenging due to low activity, poor selectivity and stability of existing catalysts. In this study, we report the fabrication of free-standing silver single-atom catalysts (Ag SACs) designed for the efficient conversion of CO2 to carbon monoxide (CO) at high current densities in a bicarbonate electrolyzer. The Ag single atoms dispersed within a carbon matrix, forming Ag-N3 active sites for the electrocatalytic CO2 reduction reaction (CO2 RR). The catalytic activity and stability of the free-standing Ag SACs are evaluated at a current density of 100 mA cm-2, demonstrating prolonged electrolysis with consistent Faradaic efficiency for CO production. Density functional theory calculations revealed that the Ag-N3 active site significantly lowers the energy barriers for the CO2 absorption step compared to Ag-Ag and Ag-Ni sites, facilitating CO2 activation and contributing to enhanced catalytic activity and stability during CO2 reduction. Detailed analysis of the electronic structure and coordination environment further validates the superior performance of the Ag-N3 site in the free-standing Ag SACs, underscoring their effectiveness in CO2 electroreduction. These findings highlight the potential of the free-standing Ag SACs to advance CO2 reduction technologies, offering enhanced efficiency and selectivity for CO2 conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信