探索热等离子体纳米颗粒形态协同免疫治疗成纤维细胞活化蛋白阳性细胞敏化和光热治疗。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-05-26 eCollection Date: 2025-08-01 DOI:10.1002/smsc.202500099
Ahmed Alsadig, Xuan Peng, Hugo Boutier, Liliana R Loureiro, Anja Feldmann, René Hübner, Humberto Cabrera, Manja Kubeil, Michael Bachmann, Larysa Baraban
{"title":"探索热等离子体纳米颗粒形态协同免疫治疗成纤维细胞活化蛋白阳性细胞敏化和光热治疗。","authors":"Ahmed Alsadig, Xuan Peng, Hugo Boutier, Liliana R Loureiro, Anja Feldmann, René Hübner, Humberto Cabrera, Manja Kubeil, Michael Bachmann, Larysa Baraban","doi":"10.1002/smsc.202500099","DOIUrl":null,"url":null,"abstract":"<p><p>The precision of photothermal therapy (PTT) is often hindered by the challenge of achieving selective delivery of thermoplasmonic nanostructures to tumors. Active targeting, which leverages synthetic molecular complexes to address receptors overexpressed by malignant cells, enables such specificity and facilitates the combination of the PTT with other anticancer therapies. In this study, we developed thermoplasmonic nanoconjugates consisting of (i) 20 nm spherical gold nanoparticles (AuNPs) or gold nanostars (AuNSs) as nanocarriers, and (ii) surface-passivated antibody-based fibroblast activation protein (FAP)-targeting modules, used in adaptive chimeric antigen receptor T-cells immunotherapy. The nanoconjugates demonstrated excellent stability and specific binding to FAP-expressing fibrosarcoma HT1080 genetically modified to express human FAP, as confirmed by fluorescence activated cell sorting, immunofluorescence, and surface plasmon resonance scattering imaging. Moreover, the nanocarriers showed significant photothermal conversion after visible and near-infrared irradiation. Quantitative thermal lens spectroscopy demonstrated the superior photothermal capability of AuNSs, achieving up to 1.5-fold greater thermal enhancement than AuNPs under identical conditions. This synergistic approach, combining targeted immunotherapy with the thermoplasmonic nanocarriers, not only streamlines nanoparticle delivery, increasing photothermal yield and therapeutic efficacy but also offers a comprehensive and potent strategy for cancer treatment with the potential for superior outcomes across multiple modalities.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 8","pages":"2500099"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362733/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein-Positive Cell Sensitization and Photothermal Therapy.\",\"authors\":\"Ahmed Alsadig, Xuan Peng, Hugo Boutier, Liliana R Loureiro, Anja Feldmann, René Hübner, Humberto Cabrera, Manja Kubeil, Michael Bachmann, Larysa Baraban\",\"doi\":\"10.1002/smsc.202500099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The precision of photothermal therapy (PTT) is often hindered by the challenge of achieving selective delivery of thermoplasmonic nanostructures to tumors. Active targeting, which leverages synthetic molecular complexes to address receptors overexpressed by malignant cells, enables such specificity and facilitates the combination of the PTT with other anticancer therapies. In this study, we developed thermoplasmonic nanoconjugates consisting of (i) 20 nm spherical gold nanoparticles (AuNPs) or gold nanostars (AuNSs) as nanocarriers, and (ii) surface-passivated antibody-based fibroblast activation protein (FAP)-targeting modules, used in adaptive chimeric antigen receptor T-cells immunotherapy. The nanoconjugates demonstrated excellent stability and specific binding to FAP-expressing fibrosarcoma HT1080 genetically modified to express human FAP, as confirmed by fluorescence activated cell sorting, immunofluorescence, and surface plasmon resonance scattering imaging. Moreover, the nanocarriers showed significant photothermal conversion after visible and near-infrared irradiation. Quantitative thermal lens spectroscopy demonstrated the superior photothermal capability of AuNSs, achieving up to 1.5-fold greater thermal enhancement than AuNPs under identical conditions. This synergistic approach, combining targeted immunotherapy with the thermoplasmonic nanocarriers, not only streamlines nanoparticle delivery, increasing photothermal yield and therapeutic efficacy but also offers a comprehensive and potent strategy for cancer treatment with the potential for superior outcomes across multiple modalities.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 8\",\"pages\":\"2500099\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362733/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202500099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实现热等离子体纳米结构对肿瘤的选择性递送的挑战往往阻碍了光热治疗(PTT)的精度。主动靶向,利用合成分子复合物来处理恶性细胞过度表达的受体,实现了这种特异性,并促进了PTT与其他抗癌疗法的结合。在这项研究中,我们开发了热等离子体纳米偶联物,包括(i) 20纳米球形金纳米粒子(AuNPs)或金纳米星(AuNSs)作为纳米载体,以及(ii)基于表面钝化抗体的成纤维细胞活化蛋白(FAP)靶向模块,用于适应性嵌合抗原受体t细胞免疫治疗。通过荧光活化细胞分选、免疫荧光和表面等离子体共振散射成像证实,纳米偶联物表现出优异的稳定性和对表达人FAP的基因修饰纤维肉瘤HT1080的特异性结合。此外,纳米载体在可见光和近红外照射下表现出明显的光热转化。定量热透镜光谱证明了AuNPs优越的光热能力,在相同条件下,其热增强效果比AuNPs高1.5倍。这种将靶向免疫治疗与热等离子体纳米载体相结合的协同方法,不仅简化了纳米颗粒的递送,提高了光热产量和治疗效果,而且还为癌症治疗提供了一种全面而有效的策略,具有跨多种方式取得优异结果的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein-Positive Cell Sensitization and Photothermal Therapy.

Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein-Positive Cell Sensitization and Photothermal Therapy.

Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein-Positive Cell Sensitization and Photothermal Therapy.

Exploring Morphology of Thermoplasmonic Nanoparticles to Synergize Immunotherapeutic Fibroblast Activation Protein-Positive Cell Sensitization and Photothermal Therapy.

The precision of photothermal therapy (PTT) is often hindered by the challenge of achieving selective delivery of thermoplasmonic nanostructures to tumors. Active targeting, which leverages synthetic molecular complexes to address receptors overexpressed by malignant cells, enables such specificity and facilitates the combination of the PTT with other anticancer therapies. In this study, we developed thermoplasmonic nanoconjugates consisting of (i) 20 nm spherical gold nanoparticles (AuNPs) or gold nanostars (AuNSs) as nanocarriers, and (ii) surface-passivated antibody-based fibroblast activation protein (FAP)-targeting modules, used in adaptive chimeric antigen receptor T-cells immunotherapy. The nanoconjugates demonstrated excellent stability and specific binding to FAP-expressing fibrosarcoma HT1080 genetically modified to express human FAP, as confirmed by fluorescence activated cell sorting, immunofluorescence, and surface plasmon resonance scattering imaging. Moreover, the nanocarriers showed significant photothermal conversion after visible and near-infrared irradiation. Quantitative thermal lens spectroscopy demonstrated the superior photothermal capability of AuNSs, achieving up to 1.5-fold greater thermal enhancement than AuNPs under identical conditions. This synergistic approach, combining targeted immunotherapy with the thermoplasmonic nanocarriers, not only streamlines nanoparticle delivery, increasing photothermal yield and therapeutic efficacy but also offers a comprehensive and potent strategy for cancer treatment with the potential for superior outcomes across multiple modalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信