石墨烯的近场光学纳米图。

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-06-30 eCollection Date: 2025-08-01 DOI:10.1002/smsc.202500184
Gour Mohan Das, Eero Hulkko, Pasi Myllyperkiö, Andreas Johansson, Mika Pettersson
{"title":"石墨烯的近场光学纳米图。","authors":"Gour Mohan Das, Eero Hulkko, Pasi Myllyperkiö, Andreas Johansson, Mika Pettersson","doi":"10.1002/smsc.202500184","DOIUrl":null,"url":null,"abstract":"<p><p>2D materials are emerging as transformative platforms for next-generation memory, sensing, photonic, and quantum devices due to their extraordinary optical, mechanical, and electronic properties. A key challenge is achieving controlled and precise nanopatterning to unlock tailored functionalities. This work uses a direct laser writing method to introduce a near-field-mediated nanopatterning technique that delivers ≈10-30 nm lateral and sub-5 nm vertical modification on graphene under ambient conditions. This approach uses a pulsed femtosecond laser in the visible wavelength range with scattering-type scanning near-field optical microscopy (s-SNOM), where the s-SNOM tip serves as a nanoscale probe. The resultant nanopatterns exhibit highly symmetric, periodic nanoscale holes with spherical perforations (nanopunch holes), with 5-25 nm dimensions. Importantly, nano- Fourier transform infrared spectroscopy reveals selective oxidative functionalization at the periphery of the nanopunch holes, highlighting a controlled surface modification of graphene. By finely tuning experimental parameters such as laser exposure time, the nanopatterning feature size ranging from 1-30 nm, and the resulting shapes from nanoscale elevated structures (nanoblister shape) to punched holes can be precisely modulated. This nanopatterning strategy achieves feature sizes at the sub-10 nm scale and represents an advancement toward fabricating all-2D material devices, setting new benchmark in nanoscale manufacturing for quantum and photonic technologies.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 8","pages":"2500184"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362822/pdf/","citationCount":"0","resultStr":"{\"title\":\"Near-Field Optical Nanopatterning of Graphene.\",\"authors\":\"Gour Mohan Das, Eero Hulkko, Pasi Myllyperkiö, Andreas Johansson, Mika Pettersson\",\"doi\":\"10.1002/smsc.202500184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>2D materials are emerging as transformative platforms for next-generation memory, sensing, photonic, and quantum devices due to their extraordinary optical, mechanical, and electronic properties. A key challenge is achieving controlled and precise nanopatterning to unlock tailored functionalities. This work uses a direct laser writing method to introduce a near-field-mediated nanopatterning technique that delivers ≈10-30 nm lateral and sub-5 nm vertical modification on graphene under ambient conditions. This approach uses a pulsed femtosecond laser in the visible wavelength range with scattering-type scanning near-field optical microscopy (s-SNOM), where the s-SNOM tip serves as a nanoscale probe. The resultant nanopatterns exhibit highly symmetric, periodic nanoscale holes with spherical perforations (nanopunch holes), with 5-25 nm dimensions. Importantly, nano- Fourier transform infrared spectroscopy reveals selective oxidative functionalization at the periphery of the nanopunch holes, highlighting a controlled surface modification of graphene. By finely tuning experimental parameters such as laser exposure time, the nanopatterning feature size ranging from 1-30 nm, and the resulting shapes from nanoscale elevated structures (nanoblister shape) to punched holes can be precisely modulated. This nanopatterning strategy achieves feature sizes at the sub-10 nm scale and represents an advancement toward fabricating all-2D material devices, setting new benchmark in nanoscale manufacturing for quantum and photonic technologies.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 8\",\"pages\":\"2500184\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362822/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202500184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于其非凡的光学、机械和电子特性,二维材料正在成为下一代存储、传感、光子和量子器件的变革平台。一个关键的挑战是实现可控和精确的纳米图案,以解锁定制的功能。这项工作使用直接激光写入方法引入了一种近场介导的纳米图技术,该技术可以在环境条件下对石墨烯进行≈10-30 nm的横向修饰和亚5 nm的纵向修饰。该方法使用可见波长范围内的脉冲飞秒激光和散射型扫描近场光学显微镜(s-SNOM),其中s-SNOM尖端充当纳米级探针。所得到的纳米图案呈现出高度对称的、具有球形孔(纳米穿孔)的周期性纳米级孔,尺寸为5-25纳米。重要的是,纳米傅里叶变换红外光谱揭示了纳米穿孔外围的选择性氧化功能化,突出了石墨烯的受控表面修饰。通过对激光曝光时间等实验参数的微调,可以精确地调制出1 ~ 30 nm范围内的纳米图案特征,以及从纳米级高架结构(纳米泡形)到穿孔的形状。这种纳米图案策略实现了低于10纳米尺度的特征尺寸,代表了制造全二维材料器件的进步,为量子和光子技术的纳米制造设定了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Near-Field Optical Nanopatterning of Graphene.

Near-Field Optical Nanopatterning of Graphene.

Near-Field Optical Nanopatterning of Graphene.

Near-Field Optical Nanopatterning of Graphene.

2D materials are emerging as transformative platforms for next-generation memory, sensing, photonic, and quantum devices due to their extraordinary optical, mechanical, and electronic properties. A key challenge is achieving controlled and precise nanopatterning to unlock tailored functionalities. This work uses a direct laser writing method to introduce a near-field-mediated nanopatterning technique that delivers ≈10-30 nm lateral and sub-5 nm vertical modification on graphene under ambient conditions. This approach uses a pulsed femtosecond laser in the visible wavelength range with scattering-type scanning near-field optical microscopy (s-SNOM), where the s-SNOM tip serves as a nanoscale probe. The resultant nanopatterns exhibit highly symmetric, periodic nanoscale holes with spherical perforations (nanopunch holes), with 5-25 nm dimensions. Importantly, nano- Fourier transform infrared spectroscopy reveals selective oxidative functionalization at the periphery of the nanopunch holes, highlighting a controlled surface modification of graphene. By finely tuning experimental parameters such as laser exposure time, the nanopatterning feature size ranging from 1-30 nm, and the resulting shapes from nanoscale elevated structures (nanoblister shape) to punched holes can be precisely modulated. This nanopatterning strategy achieves feature sizes at the sub-10 nm scale and represents an advancement toward fabricating all-2D material devices, setting new benchmark in nanoscale manufacturing for quantum and photonic technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信