单细胞转录组学的空间差异性分析。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-09-15 Epub Date: 2025-08-20 DOI:10.1016/j.crmeth.2025.101141
Quan Shi, Karsten Kristiansen
{"title":"单细胞转录组学的空间差异性分析。","authors":"Quan Shi, Karsten Kristiansen","doi":"10.1016/j.crmeth.2025.101141","DOIUrl":null,"url":null,"abstract":"<p><p>We develop the spatial dissimilarity method to uncover complex bivariate relationships in single-cell and spatial transcriptomics data, addressing challenges such as alternative splicing and allele-specific gene expression. Applying this method to detect alternative splicing in neurons demonstrates improved accuracy and sensitivity compared to existing tools, notably identifying neuron subtypes. In tumor cells, spatial dissimilarity analysis reveals somatic variants that emerge during tumor progression, validated through whole-exome sequencing. These findings highlight how allele-specific genetic variants contribute to the subclone architecture of cancer cells, offering insights into cellular heterogeneity. Applied on a human cell atlas, we uncover numerous cases of allele-specific expression of genes in normal cells. We provide a software package for spatial dissimilarity analysis to enable enhanced understanding of cellular complexity and gene expression dynamics under homeostatic conditions and during states of transitions.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101141"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial dissimilarity analysis in single-cell transcriptomics.\",\"authors\":\"Quan Shi, Karsten Kristiansen\",\"doi\":\"10.1016/j.crmeth.2025.101141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop the spatial dissimilarity method to uncover complex bivariate relationships in single-cell and spatial transcriptomics data, addressing challenges such as alternative splicing and allele-specific gene expression. Applying this method to detect alternative splicing in neurons demonstrates improved accuracy and sensitivity compared to existing tools, notably identifying neuron subtypes. In tumor cells, spatial dissimilarity analysis reveals somatic variants that emerge during tumor progression, validated through whole-exome sequencing. These findings highlight how allele-specific genetic variants contribute to the subclone architecture of cancer cells, offering insights into cellular heterogeneity. Applied on a human cell atlas, we uncover numerous cases of allele-specific expression of genes in normal cells. We provide a software package for spatial dissimilarity analysis to enable enhanced understanding of cellular complexity and gene expression dynamics under homeostatic conditions and during states of transitions.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101141\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了空间不相似性方法来揭示单细胞和空间转录组学数据中复杂的二元关系,解决诸如选择性剪接和等位基因特异性基因表达等挑战。与现有工具相比,应用该方法检测神经元中的选择性剪接显示出更高的准确性和灵敏度,特别是识别神经元亚型。在肿瘤细胞中,空间差异分析揭示了在肿瘤进展过程中出现的体细胞变异,并通过全外显子组测序进行了验证。这些发现强调了等位基因特异性遗传变异如何促进癌细胞的亚克隆结构,为细胞异质性提供了见解。应用于人类细胞图谱,我们发现了正常细胞中基因的等位基因特异性表达的许多情况。我们提供了一个用于空间差异性分析的软件包,以增强对稳态条件下和过渡状态下细胞复杂性和基因表达动力学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial dissimilarity analysis in single-cell transcriptomics.

We develop the spatial dissimilarity method to uncover complex bivariate relationships in single-cell and spatial transcriptomics data, addressing challenges such as alternative splicing and allele-specific gene expression. Applying this method to detect alternative splicing in neurons demonstrates improved accuracy and sensitivity compared to existing tools, notably identifying neuron subtypes. In tumor cells, spatial dissimilarity analysis reveals somatic variants that emerge during tumor progression, validated through whole-exome sequencing. These findings highlight how allele-specific genetic variants contribute to the subclone architecture of cancer cells, offering insights into cellular heterogeneity. Applied on a human cell atlas, we uncover numerous cases of allele-specific expression of genes in normal cells. We provide a software package for spatial dissimilarity analysis to enable enhanced understanding of cellular complexity and gene expression dynamics under homeostatic conditions and during states of transitions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信