【鉴别多病模式的统计分析方法】。

Q1 Medicine
H Ye, S S Liu, Y D Tang, Y Qian, K Y Wang, Y Zhao, L Y Liu
{"title":"【鉴别多病模式的统计分析方法】。","authors":"H Ye, S S Liu, Y D Tang, Y Qian, K Y Wang, Y Zhao, L Y Liu","doi":"10.3760/cma.j.cn112338-20241127-00753","DOIUrl":null,"url":null,"abstract":"<p><p>Multimorbidity has become a widely recognized public health problem worldwide. Identifying multimorbidity patterns can improve not only the efficiency of healthcare resource utilization but also patients' prognosis. This article summarizes three common approaches for the identification of multimorbidity patterns: association analysis methods (including association rule mining and network analysis), classification methods (including cluster analysis, latent class analysis, and latent transition analysis), and dimensionality reduction and feature extraction methods (including principal component analysis, factor analysis, and multiple correspondence analysis), introduces the application of these methods using data from the UK Biobank to identify multimorbidity patterns and discusses and compares the results of case analysis to provide reference for the selection of appropriate methods for multimorbidity pattern research.</p>","PeriodicalId":23968,"journal":{"name":"中华流行病学杂志","volume":"46 8","pages":"1422-1430"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Statistical analysis methods for identifying multimorbidity patterns].\",\"authors\":\"H Ye, S S Liu, Y D Tang, Y Qian, K Y Wang, Y Zhao, L Y Liu\",\"doi\":\"10.3760/cma.j.cn112338-20241127-00753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multimorbidity has become a widely recognized public health problem worldwide. Identifying multimorbidity patterns can improve not only the efficiency of healthcare resource utilization but also patients' prognosis. This article summarizes three common approaches for the identification of multimorbidity patterns: association analysis methods (including association rule mining and network analysis), classification methods (including cluster analysis, latent class analysis, and latent transition analysis), and dimensionality reduction and feature extraction methods (including principal component analysis, factor analysis, and multiple correspondence analysis), introduces the application of these methods using data from the UK Biobank to identify multimorbidity patterns and discusses and compares the results of case analysis to provide reference for the selection of appropriate methods for multimorbidity pattern research.</p>\",\"PeriodicalId\":23968,\"journal\":{\"name\":\"中华流行病学杂志\",\"volume\":\"46 8\",\"pages\":\"1422-1430\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华流行病学杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn112338-20241127-00753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华流行病学杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112338-20241127-00753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

多病已成为世界范围内公认的公共卫生问题。明确多病模式不仅可以提高医疗资源的利用效率,还可以改善患者的预后。本文总结了三种常见的多病模式识别方法:关联分析方法(包括关联规则挖掘和网络分析),分类方法(包括聚类分析、潜在类分析和潜在转移分析),降维和特征提取方法(包括主成分分析、因子分析和多重对应分析),利用英国生物银行的数据,介绍了这些方法的应用,以识别多发病模式,并讨论和比较了案例分析的结果,为多发病模式研究选择合适的方法提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Statistical analysis methods for identifying multimorbidity patterns].

Multimorbidity has become a widely recognized public health problem worldwide. Identifying multimorbidity patterns can improve not only the efficiency of healthcare resource utilization but also patients' prognosis. This article summarizes three common approaches for the identification of multimorbidity patterns: association analysis methods (including association rule mining and network analysis), classification methods (including cluster analysis, latent class analysis, and latent transition analysis), and dimensionality reduction and feature extraction methods (including principal component analysis, factor analysis, and multiple correspondence analysis), introduces the application of these methods using data from the UK Biobank to identify multimorbidity patterns and discusses and compares the results of case analysis to provide reference for the selection of appropriate methods for multimorbidity pattern research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中华流行病学杂志
中华流行病学杂志 Medicine-Medicine (all)
CiteScore
5.60
自引率
0.00%
发文量
8981
期刊介绍: Chinese Journal of Epidemiology, established in 1981, is an advanced academic periodical in epidemiology and related disciplines in China, which, according to the principle of integrating theory with practice, mainly reports the major progress in epidemiological research. The columns of the journal include commentary, expert forum, original article, field investigation, disease surveillance, laboratory research, clinical epidemiology, basic theory or method and review, etc.  The journal is included by more than ten major biomedical databases and index systems worldwide, such as been indexed in Scopus, PubMed/MEDLINE, PubMed Central (PMC), Europe PubMed Central, Embase, Chemical Abstract, Chinese Science and Technology Paper and Citation Database (CSTPCD), Chinese core journal essentials overview, Chinese Science Citation Database (CSCD) core database, Chinese Biological Medical Disc (CBMdisc), and Chinese Medical Citation Index (CMCI), etc. It is one of the core academic journals and carefully selected core journals in preventive and basic medicine in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信