Yakendra Bajgain, Quinn K Langdon, Cara M Krien, Martin Jarzyna, Kelly V Buh, Max A B Haase, Anthony Pasles, John F Wolters, Marizeth Groenewald, Chris Todd Hittinger, Dana A Opulente
{"title":"从加州野蔷薇中分离的一种新酵母菌Lachancea rosae Sp. Nov. fa的分类基因组学分析。","authors":"Yakendra Bajgain, Quinn K Langdon, Cara M Krien, Martin Jarzyna, Kelly V Buh, Max A B Haase, Anthony Pasles, John F Wolters, Marizeth Groenewald, Chris Todd Hittinger, Dana A Opulente","doi":"10.1002/yea.70000","DOIUrl":null,"url":null,"abstract":"<p><p>A novel Saccharomycotina yeast strain, yHQL494, was isolated from the rose hip of the wild rose Rosa californica from Castle Crags State Park, California, USA. Phylogenetic analyses of both whole genome data and the sequences from the D1/D2 region of the large ribosomal subunit (LSU) rRNA gene placed strain yHQL494 within the genus Lachancea and grouped it into a clade with Lachancea lanzarotensis and Lachancea meyersii. Taxogenomic analyses were conducted on publicly available genome sequences to gain a deeper insight into the carbon and nitrogen gene-trait associations across the Lachancea clade. The results of these analyses were found to be consistent across Lachancea species. Growth assays and microscopic analyses were conducted to determine the physiological characteristics of strain yHQL494, including the presence of hyphae or pseudohyphae, ascospore formation, fermentation abilities, and assimilation of carbon and nitrogen compounds. Based on the phenotypic and genomic characteristics of the strain yHQL494<sup>T</sup> (=NRRL Y-64858<sup>T</sup>, =CBS 18,574<sup>T</sup>), we propose a new species, Lachancea rosae sp. nov. f.a.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxogenomic Analysis of a Novel Yeast Species, Lachancea rosae Sp. Nov. F.A., Isolated From the Wild Rose Rosa californica.\",\"authors\":\"Yakendra Bajgain, Quinn K Langdon, Cara M Krien, Martin Jarzyna, Kelly V Buh, Max A B Haase, Anthony Pasles, John F Wolters, Marizeth Groenewald, Chris Todd Hittinger, Dana A Opulente\",\"doi\":\"10.1002/yea.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A novel Saccharomycotina yeast strain, yHQL494, was isolated from the rose hip of the wild rose Rosa californica from Castle Crags State Park, California, USA. Phylogenetic analyses of both whole genome data and the sequences from the D1/D2 region of the large ribosomal subunit (LSU) rRNA gene placed strain yHQL494 within the genus Lachancea and grouped it into a clade with Lachancea lanzarotensis and Lachancea meyersii. Taxogenomic analyses were conducted on publicly available genome sequences to gain a deeper insight into the carbon and nitrogen gene-trait associations across the Lachancea clade. The results of these analyses were found to be consistent across Lachancea species. Growth assays and microscopic analyses were conducted to determine the physiological characteristics of strain yHQL494, including the presence of hyphae or pseudohyphae, ascospore formation, fermentation abilities, and assimilation of carbon and nitrogen compounds. Based on the phenotypic and genomic characteristics of the strain yHQL494<sup>T</sup> (=NRRL Y-64858<sup>T</sup>, =CBS 18,574<sup>T</sup>), we propose a new species, Lachancea rosae sp. nov. f.a.</p>\",\"PeriodicalId\":23870,\"journal\":{\"name\":\"Yeast\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yeast\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/yea.70000\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.70000","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Taxogenomic Analysis of a Novel Yeast Species, Lachancea rosae Sp. Nov. F.A., Isolated From the Wild Rose Rosa californica.
A novel Saccharomycotina yeast strain, yHQL494, was isolated from the rose hip of the wild rose Rosa californica from Castle Crags State Park, California, USA. Phylogenetic analyses of both whole genome data and the sequences from the D1/D2 region of the large ribosomal subunit (LSU) rRNA gene placed strain yHQL494 within the genus Lachancea and grouped it into a clade with Lachancea lanzarotensis and Lachancea meyersii. Taxogenomic analyses were conducted on publicly available genome sequences to gain a deeper insight into the carbon and nitrogen gene-trait associations across the Lachancea clade. The results of these analyses were found to be consistent across Lachancea species. Growth assays and microscopic analyses were conducted to determine the physiological characteristics of strain yHQL494, including the presence of hyphae or pseudohyphae, ascospore formation, fermentation abilities, and assimilation of carbon and nitrogen compounds. Based on the phenotypic and genomic characteristics of the strain yHQL494T (=NRRL Y-64858T, =CBS 18,574T), we propose a new species, Lachancea rosae sp. nov. f.a.
期刊介绍:
Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology.
Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources