Fei Teng, Qingqin Gao, Li Zhou, Tongtong Cui, Xiangtian Tan, Yali Ding, Rongqi Li, Bojin Li, Bei Zhong, Miao Miao, Qi Zhou, Wei Li
{"title":"利用合成ras激活的癌症杀伤系统靶向ras突变癌细胞。","authors":"Fei Teng, Qingqin Gao, Li Zhou, Tongtong Cui, Xiangtian Tan, Yali Ding, Rongqi Li, Bojin Li, Bei Zhong, Miao Miao, Qi Zhou, Wei Li","doi":"10.1016/j.tibtech.2025.07.031","DOIUrl":null,"url":null,"abstract":"<p><p>Despite being the most commonly mutated proteins in cancer, oncogenic RAS proteins remain largely untapped as pharmacological targets. Here, we report a synthetic cancer-killing platform, termed 'RAS-activated cancer killing (RACK)' system. Leveraging a transcriptional sensor designed to detect oncogenic RAS signals with high specificity, RACK achieves targeted identification and elimination of RAS-mutant cancer cells. RACK can potently target a range of RAS and non-RAS mutants, including, but not limited to KRAS, NRAS, BRAF, and RTKs. Notably, RACK can maintain its efficacy against cancer cells that have developed acquired resistance, outperforming conventional inhibitors. In vivo, RACK selectively inhibits RAS-mutant tumor growth in xenograft models, including those intractable by allele-specific inhibitors. Furthermore, the modular design of RACK allows rational optimization of promoter inputs and therapeutic outputs. Collectively, RACK introduces a pioneering drug approach for detecting and treating RAS-mutant cancers, paving the way for overcoming challenges associated with currently undruggable cancer targets.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting RAS-mutant cancer cells using a synthetic RAS-activated cancer killing system.\",\"authors\":\"Fei Teng, Qingqin Gao, Li Zhou, Tongtong Cui, Xiangtian Tan, Yali Ding, Rongqi Li, Bojin Li, Bei Zhong, Miao Miao, Qi Zhou, Wei Li\",\"doi\":\"10.1016/j.tibtech.2025.07.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite being the most commonly mutated proteins in cancer, oncogenic RAS proteins remain largely untapped as pharmacological targets. Here, we report a synthetic cancer-killing platform, termed 'RAS-activated cancer killing (RACK)' system. Leveraging a transcriptional sensor designed to detect oncogenic RAS signals with high specificity, RACK achieves targeted identification and elimination of RAS-mutant cancer cells. RACK can potently target a range of RAS and non-RAS mutants, including, but not limited to KRAS, NRAS, BRAF, and RTKs. Notably, RACK can maintain its efficacy against cancer cells that have developed acquired resistance, outperforming conventional inhibitors. In vivo, RACK selectively inhibits RAS-mutant tumor growth in xenograft models, including those intractable by allele-specific inhibitors. Furthermore, the modular design of RACK allows rational optimization of promoter inputs and therapeutic outputs. Collectively, RACK introduces a pioneering drug approach for detecting and treating RAS-mutant cancers, paving the way for overcoming challenges associated with currently undruggable cancer targets.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2025.07.031\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.07.031","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Targeting RAS-mutant cancer cells using a synthetic RAS-activated cancer killing system.
Despite being the most commonly mutated proteins in cancer, oncogenic RAS proteins remain largely untapped as pharmacological targets. Here, we report a synthetic cancer-killing platform, termed 'RAS-activated cancer killing (RACK)' system. Leveraging a transcriptional sensor designed to detect oncogenic RAS signals with high specificity, RACK achieves targeted identification and elimination of RAS-mutant cancer cells. RACK can potently target a range of RAS and non-RAS mutants, including, but not limited to KRAS, NRAS, BRAF, and RTKs. Notably, RACK can maintain its efficacy against cancer cells that have developed acquired resistance, outperforming conventional inhibitors. In vivo, RACK selectively inhibits RAS-mutant tumor growth in xenograft models, including those intractable by allele-specific inhibitors. Furthermore, the modular design of RACK allows rational optimization of promoter inputs and therapeutic outputs. Collectively, RACK introduces a pioneering drug approach for detecting and treating RAS-mutant cancers, paving the way for overcoming challenges associated with currently undruggable cancer targets.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).