Yedam Lee, Woo Hyuk Jung, Kyounghwa Jeon, Eui Bum Choi, Taeyoung Ryu, Chanseok Lee, Do-Nyun Kim, Dong June Ahn
{"title":"具有生物降解性的膜靶向DNA框架可从冷冻细胞中恢复细胞功能和形态。","authors":"Yedam Lee, Woo Hyuk Jung, Kyounghwa Jeon, Eui Bum Choi, Taeyoung Ryu, Chanseok Lee, Do-Nyun Kim, Dong June Ahn","doi":"10.1016/j.tibtech.2025.07.028","DOIUrl":null,"url":null,"abstract":"<p><p>Cell freezing is critical for the long-term preservation of biological materials, but is limited by the cytotoxicity and inefficacy of conventional cryoprotective agents, such as dimethyl sulfoxide (DMSO). Here, we introduce DNA frameworks (DFs) as a nanoengineered programmable class of cryoprotectants designed to address these challenges. The DFs feature a programmable scaffolded structure offering large flexible wireframe contacts, cellular target ability, and biodegradability. Cholesterol-functionalized DFs outperformed conventional cryoprotectants in the recovery and maintenance of cellular functionality and morphology of frozen cells. Their cryoprotective mechanism enables targeted binding to the cell membrane, minimizing intracellular penetration or uptake, inhibits intracellular and extracellular ice growths, and promotes efficient post-thaw degradation to mitigate toxicity risks. By combining membrane-targeting specificity, cryoprotective efficacy, and biocompatibility, these DFs represent a transformative advance in cell cryopreservation.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane-targeted DNA frameworks with biodegradability recover cellular function and morphology from frozen cells.\",\"authors\":\"Yedam Lee, Woo Hyuk Jung, Kyounghwa Jeon, Eui Bum Choi, Taeyoung Ryu, Chanseok Lee, Do-Nyun Kim, Dong June Ahn\",\"doi\":\"10.1016/j.tibtech.2025.07.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell freezing is critical for the long-term preservation of biological materials, but is limited by the cytotoxicity and inefficacy of conventional cryoprotective agents, such as dimethyl sulfoxide (DMSO). Here, we introduce DNA frameworks (DFs) as a nanoengineered programmable class of cryoprotectants designed to address these challenges. The DFs feature a programmable scaffolded structure offering large flexible wireframe contacts, cellular target ability, and biodegradability. Cholesterol-functionalized DFs outperformed conventional cryoprotectants in the recovery and maintenance of cellular functionality and morphology of frozen cells. Their cryoprotective mechanism enables targeted binding to the cell membrane, minimizing intracellular penetration or uptake, inhibits intracellular and extracellular ice growths, and promotes efficient post-thaw degradation to mitigate toxicity risks. By combining membrane-targeting specificity, cryoprotective efficacy, and biocompatibility, these DFs represent a transformative advance in cell cryopreservation.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2025.07.028\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.07.028","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Membrane-targeted DNA frameworks with biodegradability recover cellular function and morphology from frozen cells.
Cell freezing is critical for the long-term preservation of biological materials, but is limited by the cytotoxicity and inefficacy of conventional cryoprotective agents, such as dimethyl sulfoxide (DMSO). Here, we introduce DNA frameworks (DFs) as a nanoengineered programmable class of cryoprotectants designed to address these challenges. The DFs feature a programmable scaffolded structure offering large flexible wireframe contacts, cellular target ability, and biodegradability. Cholesterol-functionalized DFs outperformed conventional cryoprotectants in the recovery and maintenance of cellular functionality and morphology of frozen cells. Their cryoprotective mechanism enables targeted binding to the cell membrane, minimizing intracellular penetration or uptake, inhibits intracellular and extracellular ice growths, and promotes efficient post-thaw degradation to mitigate toxicity risks. By combining membrane-targeting specificity, cryoprotective efficacy, and biocompatibility, these DFs represent a transformative advance in cell cryopreservation.
期刊介绍:
Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems.
The major themes that TIBTECH is interested in include:
Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering)
Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology)
Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics)
Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery)
Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).