Johannes Miedema, Beat Lutz, Susanne Gerber, Irina Kovlyagina, Hristo Todorov
{"title":"平衡伦理和统计:机器学习有助于根据小鼠的特质焦虑进行高度准确的分类,减少样本量。","authors":"Johannes Miedema, Beat Lutz, Susanne Gerber, Irina Kovlyagina, Hristo Todorov","doi":"10.1038/s41398-025-03546-6","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how individual differences influence vulnerability to disease and responses to pharmacological treatments represents one of the main challenges in behavioral neuroscience. Nevertheless, inter-individual variability and sex-specific patterns have been long disregarded in preclinical studies of anxiety and stress disorders. Recently, we established a model of trait anxiety that leverages the heterogeneity of freezing responses following auditory aversive conditioning to cluster female and male mice into sustained and phasic endophenotypes. However, unsupervised clustering required larger sample sizes for robust results which is contradictory to animal welfare principles. Here, we pooled data from 470 animals to train and validate supervised machine learning (ML) models for classifying mice into sustained and phasic responders in a sex-specific manner. We observed high accuracy and generalizability of our predictive models to independent animal batches. In contrast to data-driven clustering, the performance of ML classifiers remained unaffected by sample size and modifications to the conditioning protocol. Therefore, ML-assisted techniques not only enhance robustness and replicability of behavioral phenotyping results but also promote the principle of reducing animal numbers in future studies.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"304"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370989/pdf/","citationCount":"0","resultStr":"{\"title\":\"Balancing ethics and statistics: machine learning facilitates highly accurate classification of mice according to their trait anxiety with reduced sample sizes.\",\"authors\":\"Johannes Miedema, Beat Lutz, Susanne Gerber, Irina Kovlyagina, Hristo Todorov\",\"doi\":\"10.1038/s41398-025-03546-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding how individual differences influence vulnerability to disease and responses to pharmacological treatments represents one of the main challenges in behavioral neuroscience. Nevertheless, inter-individual variability and sex-specific patterns have been long disregarded in preclinical studies of anxiety and stress disorders. Recently, we established a model of trait anxiety that leverages the heterogeneity of freezing responses following auditory aversive conditioning to cluster female and male mice into sustained and phasic endophenotypes. However, unsupervised clustering required larger sample sizes for robust results which is contradictory to animal welfare principles. Here, we pooled data from 470 animals to train and validate supervised machine learning (ML) models for classifying mice into sustained and phasic responders in a sex-specific manner. We observed high accuracy and generalizability of our predictive models to independent animal batches. In contrast to data-driven clustering, the performance of ML classifiers remained unaffected by sample size and modifications to the conditioning protocol. Therefore, ML-assisted techniques not only enhance robustness and replicability of behavioral phenotyping results but also promote the principle of reducing animal numbers in future studies.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":\"15 1\",\"pages\":\"304\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12370989/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-025-03546-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03546-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Balancing ethics and statistics: machine learning facilitates highly accurate classification of mice according to their trait anxiety with reduced sample sizes.
Understanding how individual differences influence vulnerability to disease and responses to pharmacological treatments represents one of the main challenges in behavioral neuroscience. Nevertheless, inter-individual variability and sex-specific patterns have been long disregarded in preclinical studies of anxiety and stress disorders. Recently, we established a model of trait anxiety that leverages the heterogeneity of freezing responses following auditory aversive conditioning to cluster female and male mice into sustained and phasic endophenotypes. However, unsupervised clustering required larger sample sizes for robust results which is contradictory to animal welfare principles. Here, we pooled data from 470 animals to train and validate supervised machine learning (ML) models for classifying mice into sustained and phasic responders in a sex-specific manner. We observed high accuracy and generalizability of our predictive models to independent animal batches. In contrast to data-driven clustering, the performance of ML classifiers remained unaffected by sample size and modifications to the conditioning protocol. Therefore, ML-assisted techniques not only enhance robustness and replicability of behavioral phenotyping results but also promote the principle of reducing animal numbers in future studies.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.