{"title":"gendense - net:解开全球病原体的基因组之谜。","authors":"Shivendra Dubey, Sakshi Dubey, Kapil Raghuwanshi, Pranshu Pranjal, Sudheer Kumar","doi":"10.1186/s40794-025-00267-y","DOIUrl":null,"url":null,"abstract":"<p><p>The respiratory system of humans is impacted by infectious and deadly illnesses like COVID-19. Early identification and diagnosis of this type of illness is essential to stop the infection from spreading further. In the present research, we presented a technique for determining the condition using COVID-19's current genome sequences employing the DenseNet-16 framework. We operated a network of already trained neurons before using a transfer learning method to prepare it according to our dataset. Additionally, we preprocessed the collected information using the NearKbest interpolation approach; then, we utilized Adam Optimizer to optimize our findings. Compared with special deep learning models like ResNet-50, VGG-19, AlexNet, and VGG-16, our approach produced an accuracy of 99.18%. The model was deployed on a platform with GPU support, which greatly decreased training time. Dataset size and the requirement for further validation are two of the study's limitations, despite the encouraging results. The current research showed how a deep learning approach may be useful to categorize the genome sequence of infectious disease like COVID-19 using the suggested GenoDense-Net architecture. The next step in this research project is conducting investigations in the clinic.</p>","PeriodicalId":23303,"journal":{"name":"Tropical Diseases, Travel Medicine and Vaccines","volume":"11 1","pages":"32"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406457/pdf/","citationCount":"0","resultStr":"{\"title\":\"GenoDense-Net: unraveling the genomic puzzle of the global pathogen.\",\"authors\":\"Shivendra Dubey, Sakshi Dubey, Kapil Raghuwanshi, Pranshu Pranjal, Sudheer Kumar\",\"doi\":\"10.1186/s40794-025-00267-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The respiratory system of humans is impacted by infectious and deadly illnesses like COVID-19. Early identification and diagnosis of this type of illness is essential to stop the infection from spreading further. In the present research, we presented a technique for determining the condition using COVID-19's current genome sequences employing the DenseNet-16 framework. We operated a network of already trained neurons before using a transfer learning method to prepare it according to our dataset. Additionally, we preprocessed the collected information using the NearKbest interpolation approach; then, we utilized Adam Optimizer to optimize our findings. Compared with special deep learning models like ResNet-50, VGG-19, AlexNet, and VGG-16, our approach produced an accuracy of 99.18%. The model was deployed on a platform with GPU support, which greatly decreased training time. Dataset size and the requirement for further validation are two of the study's limitations, despite the encouraging results. The current research showed how a deep learning approach may be useful to categorize the genome sequence of infectious disease like COVID-19 using the suggested GenoDense-Net architecture. The next step in this research project is conducting investigations in the clinic.</p>\",\"PeriodicalId\":23303,\"journal\":{\"name\":\"Tropical Diseases, Travel Medicine and Vaccines\",\"volume\":\"11 1\",\"pages\":\"32\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406457/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Diseases, Travel Medicine and Vaccines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40794-025-00267-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Diseases, Travel Medicine and Vaccines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40794-025-00267-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
GenoDense-Net: unraveling the genomic puzzle of the global pathogen.
The respiratory system of humans is impacted by infectious and deadly illnesses like COVID-19. Early identification and diagnosis of this type of illness is essential to stop the infection from spreading further. In the present research, we presented a technique for determining the condition using COVID-19's current genome sequences employing the DenseNet-16 framework. We operated a network of already trained neurons before using a transfer learning method to prepare it according to our dataset. Additionally, we preprocessed the collected information using the NearKbest interpolation approach; then, we utilized Adam Optimizer to optimize our findings. Compared with special deep learning models like ResNet-50, VGG-19, AlexNet, and VGG-16, our approach produced an accuracy of 99.18%. The model was deployed on a platform with GPU support, which greatly decreased training time. Dataset size and the requirement for further validation are two of the study's limitations, despite the encouraging results. The current research showed how a deep learning approach may be useful to categorize the genome sequence of infectious disease like COVID-19 using the suggested GenoDense-Net architecture. The next step in this research project is conducting investigations in the clinic.
期刊介绍:
Tropical Diseases, Travel Medicine and Vaccines is an open access journal that considers basic, translational and applied research, as well as reviews and commentary, related to the prevention and management of healthcare and diseases in international travelers. Given the changes in demographic trends of travelers globally, as well as the epidemiological transitions which many countries are experiencing, the journal considers non-infectious problems including chronic disease among target populations of interest as well as infectious diseases.