深度对抗性学习确定了adhd特异性凋亡基因与额-纹状体-小脑回路白质微观结构之间的关联。

IF 6.2 1区 医学 Q1 PSYCHIATRY
Yilu Zhao, Xiangyu Zheng, Xuping Gao, Ning Wang, Zhao Fu, Junbin Tian, Kangfuxi Zhang, Peng Wang, ShaoXian Li, Jichang Zhang, XueTong Ding, Hui Zhang, Li Sun, Binrang Yang, Shuyu Li, Suhua Chang, Qingjiu Cao, Yufeng Wang, Li Yang
{"title":"深度对抗性学习确定了adhd特异性凋亡基因与额-纹状体-小脑回路白质微观结构之间的关联。","authors":"Yilu Zhao, Xiangyu Zheng, Xuping Gao, Ning Wang, Zhao Fu, Junbin Tian, Kangfuxi Zhang, Peng Wang, ShaoXian Li, Jichang Zhang, XueTong Ding, Hui Zhang, Li Sun, Binrang Yang, Shuyu Li, Suhua Chang, Qingjiu Cao, Yufeng Wang, Li Yang","doi":"10.1038/s41398-025-03493-2","DOIUrl":null,"url":null,"abstract":"<p><p>Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by genetic predisposition and alterations in brain structural connectivity. While existing studies have established associations between genetic variants and neuroanatomical features, the specific relationships in ADHD remained poorly understood. To address this gap, we developed adversarial deep canonical correlation analysis models (A-DCCA) to disentangle ADHD-specific and non-specific \"gene-white matter\" association patterns. Utilizing diffusion tensor imaging and genotype data from six-hundred ADHD and typically developed children in a Chiese cohort, the current study revealed ADHD-specific correlations between the right cerebral peduncle, right posterior limb of the internal capsule, and genes regulating neural apoptotic processes (CAMK1D, METTL15, and MAP2K4). In contrast, associations involving the left cerebral peduncle, left posterior limb of the internal capsule, right superior longitudinal fasciculus, and right posterior thalamic radiation with genes related to early neural development (FYN, PHF2, ZSCAN31, and CD82) presented associations shared by ADHD and non-ADHD groups. Incorporating interpretable deep learning models, the current study unveiled white matter regions vulnerable to genetic influences in ADHD-specific and non-specific ways, shedding light on the understanding of biological substrates of ADHD.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"320"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381256/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep adversarial learning identifies ADHD-specific associations between apoptotic genes and white matter microstructure in frontal-striatum-cerebellum circuit.\",\"authors\":\"Yilu Zhao, Xiangyu Zheng, Xuping Gao, Ning Wang, Zhao Fu, Junbin Tian, Kangfuxi Zhang, Peng Wang, ShaoXian Li, Jichang Zhang, XueTong Ding, Hui Zhang, Li Sun, Binrang Yang, Shuyu Li, Suhua Chang, Qingjiu Cao, Yufeng Wang, Li Yang\",\"doi\":\"10.1038/s41398-025-03493-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by genetic predisposition and alterations in brain structural connectivity. While existing studies have established associations between genetic variants and neuroanatomical features, the specific relationships in ADHD remained poorly understood. To address this gap, we developed adversarial deep canonical correlation analysis models (A-DCCA) to disentangle ADHD-specific and non-specific \\\"gene-white matter\\\" association patterns. Utilizing diffusion tensor imaging and genotype data from six-hundred ADHD and typically developed children in a Chiese cohort, the current study revealed ADHD-specific correlations between the right cerebral peduncle, right posterior limb of the internal capsule, and genes regulating neural apoptotic processes (CAMK1D, METTL15, and MAP2K4). In contrast, associations involving the left cerebral peduncle, left posterior limb of the internal capsule, right superior longitudinal fasciculus, and right posterior thalamic radiation with genes related to early neural development (FYN, PHF2, ZSCAN31, and CD82) presented associations shared by ADHD and non-ADHD groups. Incorporating interpretable deep learning models, the current study unveiled white matter regions vulnerable to genetic influences in ADHD-specific and non-specific ways, shedding light on the understanding of biological substrates of ADHD.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":\"15 1\",\"pages\":\"320\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381256/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-025-03493-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03493-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

注意缺陷多动障碍(ADHD)是一种以遗传易感性和大脑结构连接改变为特征的神经发育障碍。虽然现有的研究已经建立了遗传变异和神经解剖学特征之间的联系,但对多动症的具体关系仍然知之甚少。为了解决这一差距,我们开发了对抗性深度典型相关分析模型(A-DCCA)来解开adhd特异性和非特异性“基因-白质”关联模式。利用中国队列中600名ADHD和典型发育儿童的扩散张量成像和基因型数据,目前的研究揭示了右脑脚、右脑内囊后肢和调节神经凋亡过程的基因(CAMK1D、METTL15和MAP2K4)之间的ADHD特异性相关性。相比之下,涉及左脑脚、左内囊后肢、右上纵束和右丘脑后辐射与早期神经发育相关基因(FYN、PHF2、ZSCAN31和CD82)的关联在ADHD组和非ADHD组中呈现出共同的关联。结合可解释的深度学习模型,目前的研究揭示了白质区域在ADHD特异性和非特异性方面容易受到遗传影响,从而揭示了对ADHD生物学基础的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep adversarial learning identifies ADHD-specific associations between apoptotic genes and white matter microstructure in frontal-striatum-cerebellum circuit.

Deep adversarial learning identifies ADHD-specific associations between apoptotic genes and white matter microstructure in frontal-striatum-cerebellum circuit.

Deep adversarial learning identifies ADHD-specific associations between apoptotic genes and white matter microstructure in frontal-striatum-cerebellum circuit.

Deep adversarial learning identifies ADHD-specific associations between apoptotic genes and white matter microstructure in frontal-striatum-cerebellum circuit.

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by genetic predisposition and alterations in brain structural connectivity. While existing studies have established associations between genetic variants and neuroanatomical features, the specific relationships in ADHD remained poorly understood. To address this gap, we developed adversarial deep canonical correlation analysis models (A-DCCA) to disentangle ADHD-specific and non-specific "gene-white matter" association patterns. Utilizing diffusion tensor imaging and genotype data from six-hundred ADHD and typically developed children in a Chiese cohort, the current study revealed ADHD-specific correlations between the right cerebral peduncle, right posterior limb of the internal capsule, and genes regulating neural apoptotic processes (CAMK1D, METTL15, and MAP2K4). In contrast, associations involving the left cerebral peduncle, left posterior limb of the internal capsule, right superior longitudinal fasciculus, and right posterior thalamic radiation with genes related to early neural development (FYN, PHF2, ZSCAN31, and CD82) presented associations shared by ADHD and non-ADHD groups. Incorporating interpretable deep learning models, the current study unveiled white matter regions vulnerable to genetic influences in ADHD-specific and non-specific ways, shedding light on the understanding of biological substrates of ADHD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
2.90%
发文量
484
审稿时长
23 weeks
期刊介绍: Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信