Roseane Galdioli Nava, Anny Silva Adri, Igor Salerno Filgueiras, Adriel Leal Nóbile, Pedro Marçal Barcelos, Yohan Lucas Gonçalves Corrêa, Sergio Felipe de Oliveira, Gustavo Cabral-Miranda, Haroldo Dutra Dias, Lena F Schimke, René de Araújo Gleizer, Rodrigo Juliani Siqueira Dalmolin, Helder I Nakaya, Rafael Machado Rezende, Otavio Cabral-Marques
{"title":"抗抑郁药对神经免疫细胞因子网络的调节:对情绪调节的影响。","authors":"Roseane Galdioli Nava, Anny Silva Adri, Igor Salerno Filgueiras, Adriel Leal Nóbile, Pedro Marçal Barcelos, Yohan Lucas Gonçalves Corrêa, Sergio Felipe de Oliveira, Gustavo Cabral-Miranda, Haroldo Dutra Dias, Lena F Schimke, René de Araújo Gleizer, Rodrigo Juliani Siqueira Dalmolin, Helder I Nakaya, Rafael Machado Rezende, Otavio Cabral-Marques","doi":"10.1038/s41398-025-03532-y","DOIUrl":null,"url":null,"abstract":"<p><p>Major Depressive Disorder (MDD) is increasingly recognized as a neuroinflammatory condition characterized by dysregulated cytokine networks. This comprehensive review examines the immunomodulatory effects of antidepressant medications, revealing their significant impact on Th1/Th2 cytokine balance beyond their classical neurotransmitter actions. Clinical data show that diverse antidepressant classes consistently demonstrate immunomodulatory properties that extend beyond their classical neurotransmitter effects. These medications reduce pro-inflammatory markers (IFN-γ, TNF-α, IL-6) while enhancing anti-inflammatory cytokines (IL-10, TGF-β), effects particularly relevant for treatment-resistant cases with elevated baseline inflammation. The therapeutic potential of these immunoregulatory effects is supported by emerging interventions, including low-dose IL-2 immunotherapy, vagus nerve stimulation, and microbiota-targeted therapies, which show promise for specific depression subtypes. Importantly, these approaches appear most effective when guided by inflammatory biomarkers, suggesting a path toward personalized treatment strategies. By integrating findings from clinical studies and translational research, this work establishes immune modulation as a fundamental component of antidepressant action. The review provides a framework for developing next-generation treatments that target neuroimmune pathways in MDD, with particular emphasis on practical applications for treatment-resistant cases. These insights bridge the gap between neuropharmacology and clinical psychiatry, offering new therapeutic possibilities for patients with inflammation-associated depression.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"314"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375052/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modulation of neuroimmune cytokine networks by antidepressants: implications in mood regulation.\",\"authors\":\"Roseane Galdioli Nava, Anny Silva Adri, Igor Salerno Filgueiras, Adriel Leal Nóbile, Pedro Marçal Barcelos, Yohan Lucas Gonçalves Corrêa, Sergio Felipe de Oliveira, Gustavo Cabral-Miranda, Haroldo Dutra Dias, Lena F Schimke, René de Araújo Gleizer, Rodrigo Juliani Siqueira Dalmolin, Helder I Nakaya, Rafael Machado Rezende, Otavio Cabral-Marques\",\"doi\":\"10.1038/s41398-025-03532-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Major Depressive Disorder (MDD) is increasingly recognized as a neuroinflammatory condition characterized by dysregulated cytokine networks. This comprehensive review examines the immunomodulatory effects of antidepressant medications, revealing their significant impact on Th1/Th2 cytokine balance beyond their classical neurotransmitter actions. Clinical data show that diverse antidepressant classes consistently demonstrate immunomodulatory properties that extend beyond their classical neurotransmitter effects. These medications reduce pro-inflammatory markers (IFN-γ, TNF-α, IL-6) while enhancing anti-inflammatory cytokines (IL-10, TGF-β), effects particularly relevant for treatment-resistant cases with elevated baseline inflammation. The therapeutic potential of these immunoregulatory effects is supported by emerging interventions, including low-dose IL-2 immunotherapy, vagus nerve stimulation, and microbiota-targeted therapies, which show promise for specific depression subtypes. Importantly, these approaches appear most effective when guided by inflammatory biomarkers, suggesting a path toward personalized treatment strategies. By integrating findings from clinical studies and translational research, this work establishes immune modulation as a fundamental component of antidepressant action. The review provides a framework for developing next-generation treatments that target neuroimmune pathways in MDD, with particular emphasis on practical applications for treatment-resistant cases. These insights bridge the gap between neuropharmacology and clinical psychiatry, offering new therapeutic possibilities for patients with inflammation-associated depression.</p>\",\"PeriodicalId\":23278,\"journal\":{\"name\":\"Translational Psychiatry\",\"volume\":\"15 1\",\"pages\":\"314\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12375052/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41398-025-03532-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03532-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Modulation of neuroimmune cytokine networks by antidepressants: implications in mood regulation.
Major Depressive Disorder (MDD) is increasingly recognized as a neuroinflammatory condition characterized by dysregulated cytokine networks. This comprehensive review examines the immunomodulatory effects of antidepressant medications, revealing their significant impact on Th1/Th2 cytokine balance beyond their classical neurotransmitter actions. Clinical data show that diverse antidepressant classes consistently demonstrate immunomodulatory properties that extend beyond their classical neurotransmitter effects. These medications reduce pro-inflammatory markers (IFN-γ, TNF-α, IL-6) while enhancing anti-inflammatory cytokines (IL-10, TGF-β), effects particularly relevant for treatment-resistant cases with elevated baseline inflammation. The therapeutic potential of these immunoregulatory effects is supported by emerging interventions, including low-dose IL-2 immunotherapy, vagus nerve stimulation, and microbiota-targeted therapies, which show promise for specific depression subtypes. Importantly, these approaches appear most effective when guided by inflammatory biomarkers, suggesting a path toward personalized treatment strategies. By integrating findings from clinical studies and translational research, this work establishes immune modulation as a fundamental component of antidepressant action. The review provides a framework for developing next-generation treatments that target neuroimmune pathways in MDD, with particular emphasis on practical applications for treatment-resistant cases. These insights bridge the gap between neuropharmacology and clinical psychiatry, offering new therapeutic possibilities for patients with inflammation-associated depression.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.